• Journal of biomechanics · Feb 2015

    On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo.

    • Peng-Fei Yang, Andreas Kriechbaumer, Kirsten Albracht, Maximilian Sanno, Bergita Ganse, Timmo Koy, Peng Shang, Gert-Peter Brüggemann, Lars Peter Müller, and Jörn Rittweger.
    • Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi׳an, China; Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany. Electronic address: yangpf@nwpu.edu.cn.
    • J Biomech. 2015 Feb 5; 48 (3): 456-64.

    AbstractThe mechanical relationship between bone and muscle has been long recognized. However, it still remains unclear how muscles exactly load on bone. In this study, utilizing an optical segment tracking technique, the in vivo tibia loading regimes in terms of tibia segment deformation in humans were investigated during walking, forefoot and rear foot stair ascent and running and isometric plantar flexion. Results suggested that the proximal tibia primarily bends to the posterior aspect and twists to the external aspect with respect to the distal tibia. During walking, peak posterior bending and peak torsion occurred in the first half (22%) and second half (76%) of the stance phase, respectively. During stair ascent, two noticeable peaks of torsion were found with forefoot strike (38% and 82% of stance phase), but only one peak of torsion was found with rear foot strike (78% of stance phase). The torsional deformation angle during both stair ascent and running was larger with forefoot strike than rear foot strike. During isometric plantar flexion, the tibia deformation regimes were characterized more by torsion (maximum 1.35°) than bending (maximum 0.52°). To conclude, bending and torsion predominated the tibia loading regimes during the investigated activities. Tibia torsional deformation is closely related to calf muscle contractions, which further confirm the notion of the muscle-bone mechanical link and shift the focus from loading magnitude to loading regimes in bone mechanobiology. It thus is speculated that torsion is another, yet under-rated factor, besides the compression and tension, to drive long bone mechano-adaptation.Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.