• IEEE Trans Biomed Eng · Apr 2008

    Robust unsupervised detection of action potentials with probabilistic models.

    • Raul Benitez and Zoran Nenadic.
    • Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA. raul.benitez@upc.edu
    • IEEE Trans Biomed Eng. 2008 Apr 1; 55 (4): 1344-54.

    AbstractWe develop a robust and fully unsupervised algorithm for the detection of action potentials from extracellularly recorded data. Using the continuous wavelet transform allied to probabilistic mixture models and Bayesian probability theory, the detection of action potentials is posed as a model selection problem. Our technique provides a robust performance over a wide range of simulated conditions, and compares favorably to selected supervised and unsupervised detection techniques.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…