-
- Q H Yang and S J Lai-Fook.
- Biomedical Engineering Center, University of Kentucky, Lexington 40506.
- J. Appl. Physiol. 1991 Jul 1; 71 (1): 76-82.
AbstractAt functional residual capacity, lung expansion is more uniform in the prone position than in the supine position. We examined the effect of positive airway pressure (Paw) on this position-dependent difference in lung expansion. In supine and prone rabbits postmortem, we measured alveolar size through dependent and nondependent pleural windows via videomicroscopy at Paw of 0 (functional residual capacity), 7, and 15 cmH2O. After the chest was opened, alveolar size was measured in the isolated lung at several transpulmonary pressures (Ptp) on lung deflation. Alveolar mean linear intercept (Lm) was measured from the video images taken in situ. This was compared with those measured in the isolated lung to determine Ptp in situ. In the supine position, the vertical Ptp gradient increased from 0.52 cmH2O/cm at 0 cmH2O Paw to 0.90 cmH2O/cm at 15 cmH2O Paw, while the vertical gradient in Lm decreased from 2.17 to 0.80 microns/cm. In the prone position, the vertical Ptp gradient increased from 0.06 cmH2O/cm at 0 cmH2O Paw to 0.35 cmH2O/cm at 15 cmH2O Paw, but there was no change in the vertical Lm gradient. In anesthetized paralyzed rabbits in supine and prone positions, we measured pleural liquid pressure directly at 0, 7, and 15 cmH2O Paw with dependent and nondependent rib capsules. Vertical Ptp gradients measured with rib capsules were similar to those estimated from the alveolar size measurements. Lung inflation during mechanical ventilation may reduce the vertical nonuniformities in lung expansion observed in the supine position, thereby improving gas exchange and the distribution of ventilation.
Notes
Knowledge, pearl, summary or comment to share?