• Journal of neurotrauma · Feb 2017

    Clinical Trial Observational Study

    Cerebrospinal Fluid Biomarkers to Stratify Injury Severity and Predict Outcome in Human Traumatic Spinal Cord Injury.

    • Brian K Kwon, Femke Streijger, Nader Fallah, Vanessa K Noonan, Lise M Bélanger, Leanna Ritchie, Scott J Paquette, Tamir Ailon, Michael C Boyd, John Street, Charles G Fisher, and Marcel F Dvorak.
    • 1 Department of Orthopedics, Vancouver Spine Surgery Institute , Vancouver, British Columbia, Canada .
    • J. Neurotrauma. 2017 Feb 1; 34 (3): 567-580.

    AbstractNeurologic impairment after spinal cord injury (SCI) is currently measured and classified by functional examination. Biological markers that objectively classify injury severity and predict outcome would greatly facilitate efforts to evaluate acute SCI therapies. The purpose of this study was to determine how well inflammatory and structural proteins within the cerebrospinal fluid (CSF) of acute traumatic SCI patients predicted American Spinal Injury Association Impairment Scale (AIS) grade conversion and motor score improvement over 6 months. Fifty acute SCI patients (29 AIS A, 9 AIS B, 12 AIS C; 32 cervical, 18 thoracic) were enrolled and CSF obtained through lumbar intrathecal catheters to analyze interleukin (IL)-6, IL-8, monocyte chemotactic protein (MCP)-1, tau, S100β, and glial fibrillary acidic protein (GFAP) at 24 h post-injury. The levels of IL-6, tau, S100β, and GFAP were significantly different between patients with baseline AIS grades of A, B, or C. The levels of all proteins (IL-6, IL-8, MCP-1, tau, S100β, and GFAP) were significantly different between those who improved an AIS grade over 6 months and those who did not improve. Linear discriminant analysis modeling was 83% accurate in predicting AIS conversion. For AIS A patients, the concentrations of proteins such as IL-6 and S100β correlated with conversion to AIS B or C. Motor score improvement also was strongly correlated with the 24-h post-injury CSF levels of all six biomarkers. The analysis of CSF can provide valuable biological information about injury severity and recovery potential after acute SCI. Such biological markers may be valuable tools for stratifying individuals in acute clinical trials where variability in spontaneous recovery requires large recruitment cohorts for sufficient power.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…