• Plos One · Jan 2015

    Observational Study

    Diagnostic Support for Selected Paediatric Pulmonary Diseases Using Answer-Pattern Recognition in Questionnaires Based on Combined Data Mining Applications--A Monocentric Observational Pilot Study.

    • Ann-Katrin Rother, Nicolaus Schwerk, Folke Brinkmann, Frank Klawonn, Werner Lechner, and Lorenz Grigull.
    • Department of Paediatric Haematology and Oncology, University Children's Hospital, Hanover Medical School, Hanover, Germany.
    • Plos One. 2015 Jan 1; 10 (8): e0135180.

    BackgroundClinical symptoms in children with pulmonary diseases are frequently non-specific. Rare diseases such as primary ciliary dyskinesia (PCD), cystic fibrosis (CF) or protracted bacterial bronchitis (PBB) can be easily missed at the general practitioner (GP).ObjectiveTo develop and test a questionnaire-based and data mining-supported tool providing diagnostic support for selected pulmonary diseases.MethodsFirst, interviews with parents of affected children were conducted and analysed. These parental observations during the pre-diagnostic time formed the basis for a new questionnaire addressing the parents' view on the disease. Secondly, parents with a sick child (e.g. PCD, PBB) answered the questionnaire and a data base was set up. Finally, a computer program consisting of eight different classifiers (support vector machine (SVM), artificial neural network (ANN), fuzzy rule-based, random forest, logistic regression, linear discriminant analysis, naive Bayes and nearest neighbour) and an ensemble classifier was developed and trained to categorise any given new questionnaire and suggest a diagnosis. For estimating the diagnostic accuracy, we applied ten-fold stratified cross validation.ResultsAll questionnaires of patients suffering from CF, asthma (AS), PCD, acute bronchitis (AB) and the healthy control group were correctly diagnosed by the fusion algorithm. For the pneumonia (PM) group 19/21 (90.5%) and for the PBB group 17/18 (94.4%) correct diagnoses could be reached. The program detected the correct diagnoses with an overall sensitivity of 98.8%. Receiver operating characteristics (ROC) analyses confirmed the accuracy of this diagnostic tool. Case studies highlighted the applicability of the tool in the daily work of a GP.ConclusionFor children with symptoms of pulmonary diseases a questionnaire-based diagnostic support tool using data mining techniques exhibited good results in arriving at diagnostic suggestions. In the hands of a doctor, this tool could be of value in arousing awareness for rare pulmonary diseases such as PCD or CF.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.