• J. Biol. Chem. · Aug 1998

    Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor.

    • S Strack and R J Colbran.
    • Department of Molecular Physiology and Biophysics and Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0615, USA.
    • J. Biol. Chem. 1998 Aug 14; 273 (33): 20689-92.

    AbstractActivation and Thr286 autophosphorylation of calcium/calmodulindependent kinase II (CaMKII) following Ca2+ influx via N-methyl-D-aspartate (NMDA)-type glutamate receptors is essential for hippocampal long term potentiation (LTP), a widely investigated cellular model of learning and memory. Here, we show that NR2B, but not NR2A or NR1, subunits of NMDA receptors are responsible for autophosphorylation-dependent targeting of CaMKII. CaMKII and NMDA receptors colocalize in neuronal dendritic spines, and a CaMKII.NMDA receptor complex can be isolated from brain extracts. Autophosphorylation induces direct high-affinity binding of CaMKII to a 50 amino acid domain in the NR2B cytoplasmic tail; little or no binding is observed to NR2A and NR1 cytoplasmic tails. Specific colocalization of CaMKII with NR2B-containing NMDA receptors in transfected cells depends on receptor activation, Ca2+ influx, and Thr286 autophosphorylation. Translocation of CaMKII because of interaction with the NMDA receptor Ca2+ channel may potentiate kinase activity and provide exquisite spatial and temporal control of postsynaptic substrate phosphorylation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…