-
- Junichiro Nakagawa, Naoya Matsumoto, Yuko Nakane, Kazuma Yamakawa, Tomoki Yamada, Hisatake Matsumoto, Junya Shimazaki, Yukio Imamura, Hiroshi Ogura, Takashi Jin, and Takeshi Shimazu.
- *Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan †Laboratory for Nano-Bio Probes Quantitative Biology Center, Riken, Osaka, Japan.
- Shock. 2016 Dec 1; 46 (6): 681-687.
AbstractCrush syndrome is a devastating condition leading to multiple organ failure. The mechanisms by which local traumatic injuries affect distant organs remain unknown. ETS-GS is a novel water-soluble, stable anti-oxidative agent composed of vitamin E derivative. Given that one of the main pathophysiological effects in crush syndrome is massive ischemia-reperfusion, reactive oxygen species (ROS) generated from the injured extremities would be systemically involved in distant organ damage. We investigated whether ETS-GS could suppress inflammatory response and improve mortality in a rat model of crush injury. Crush injury was induced by compression of bilateral hindlimbs for 6 h followed by release of compression. Seven-day survival was significantly improved by ETS-GS treatment. To estimate anti-oxidative and anti-inflammatory effects of ETS-GS, serum was collected 6 and 20 h after the injury. ETS-GS treatment significantly dampened the up-regulation of malondialdehyde and reduction of superoxide dismutase in the serum, which were induced by crush injury. Serum levels of interleukin 6 and high mobility group box 1 were significantly decreased in the ETS-GS group compared with those in the control group. Lung damage shown by hematoxylin-eosin staining at 20 h after the injury was ameliorated by the treatment. Ex vivo imaging confirmed that ETS-GS treatment reduced ROS generation in both the lung and the muscle following crush injury. The administration of ETS-GS could suppress ROS generation, systemic inflammation, and the subsequent organ damage, thus improving survival in a rat model of crush injury. These findings suggest that ETS-GS can become a novel therapeutic agent against crush injury.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.