• J. Neurosci. · Feb 1995

    Sensory neurons selectively upregulate synthesis and transport of the beta III-tubulin protein during axonal regeneration.

    • P F Moskowitz and M M Oblinger.
    • Department of Cell Biology and Anatomy, Chicago Medical School, Illinois 60064.
    • J. Neurosci. 1995 Feb 1; 15 (2): 1545-55.

    AbstractThe effects of peripheral nerve injury on the content, synthesis, and axonal transport of the class III beta-tubulin protein in adult rat dorsal root ganglion (DRG) neurons were examined. Recent reports of selective increases in the steady-state levels of the beta III-tubulin mRNA during axonal regeneration (Moskowitz et al., 1993) led to the hypothesis that upregulated levels of expression of the beta III-tubulin isotype that alter the composition of neuronal microtubules is important for effective axonal regrowth. If this is the case, the increases in mRNA levels must be translated into increased beta III-tubulin protein levels and subsequently modify the axonal cytoskeleton via axonal transport mechanisms. The present study assessed whether or not this occurs by examining beta III-tubulin protein content in adult rat lumbar DRG neurons at different times (1-14 d) after a distal sciatic nerve crush (approximately 55 mm from the DRG) by Western blotting and immunocytochemistry with a beta III-tubulin specific monoclonal antibody. These studies showed substantial increases in beta III-tubulin content in DRG neurons, as well as in proximal regions of peripheral sensory axons (0-6 mm from the DRG), from 1-2 weeks after a distal nerve injury. Pulse labeling of DRG neurons with 35S-methionine and 35S-cysteine and immunoprecipitation of labeled beta III-tubulin indicated that the synthesis of beta III-tubulin was increased in the DRG after axotomy. Studies of axonal transport, wherein L5 DRG proteins were labeled with 35S-methionine and 35S-cysteine by microinjection, revealed that slow component b(SCb) of axonal transport conveyed more labeled tubulin moving at apparently faster rates through the intact regions of sciatic nerve axons in response to crush injury of the distal sciatic nerve. Immunoprecipitation experiments using proximal peripheral nerve segments showed that SCb in distally injured DRG neurons was enriched in the beta III-tubulin isotype. These findings demonstrate that the augmented synthesis of beta III-tubulin after axotomy alters the composition of the axonally transported cytoskeleton that moves with SCb. The increased amounts and rate of delivery of beta III-tubulin in axons of regenerating DRG neurons suggest that the altered pattern of tubulin gene expression that is initiated by axotomy impacts on the composition and organization of the axonal cytoskeleton in a manner that can facilitate axonal regrowth.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…