• Clin Med Res · Jun 2011

    Historical Article

    Using historical vital statistics to predict the distribution of under-five mortality by cause.

    • Chalapati Rao, Timothy Adair, and Yohannes Kinfu.
    • School of Population Health, University of Queensland, Herston QLD, Australia. c.rao@sph.uq.edu.au
    • Clin Med Res. 2011 Jun 1; 9 (2): 66-74.

    BackgroundCause-specific mortality data is essential for planning intervention programs to reduce mortality in the under age five years population (under-five). However, there is a critical paucity of such information for most of the developing world, particularly where progress towards the United Nations Millennium Development Goal 4 (MDG 4) has been slow. This paper presents a predictive cause of death model for under-five mortality based on historical vital statistics and discusses the utility of the model in generating information that could accelerate progress towards MDG 4.MethodsOver 1400 country years of vital statistics from 34 countries collected over a period of nearly a century were analyzed to develop relationships between levels of under-five mortality, related mortality ratios, and proportionate mortality from four cause groups: perinatal conditions; diarrhea and lower respiratory infections; congenital anomalies; and all other causes of death. A system of multiple equations with cross-equation parameter restrictions and correlated error terms was developed to predict proportionate mortality by cause based on given measures of under-five mortality. The strength of the predictive model was tested through internal and external cross-validation techniques. Modeled cause-specific mortality estimates for major regions in Africa, Asia, Central America, and South America are presented to illustrate its application across a range of under-five mortality rates.ResultsConsistent and plausible trends and relationships are observed from historical data. High mortality rates are associated with increased proportions of deaths from diarrhea and lower respiratory infections. Perinatal conditions assume importance as a proportionate cause at under-five mortality rates below 60 per 1000 live births. Internal and external validation confirms strength and consistency of the predictive model. Model application at regional level demonstrates heterogeneity and non-linearity in cause-composition arising from the range of under-five mortality rates and related mortality ratios.ConclusionsHistorical analyses suggest that under-five mortality transitions are associated with significant changes in cause of death composition. Sub-national differentials in under-five mortality rates could require intervention programs targeted to address specific cause distributions. The predictive model could, therefore, help set broad priorities for interventions at the local level based on periodic under-five mortality measurement. Given current resource constraints, such priority setting mechanisms are essential to accelerate reductions in under-five mortality.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.