• Anesthesiology · Jul 2000

    Norepinephrine-induced apoptosis is inhibited in adult rat ventricular myocytes exposed to volatile anesthetics.

    • M Zaugg, N Z Jamali, E Lucchinetti, S A Shafiq, and M A Siddiqui.
    • Departments of Anesthesiology, State University of New York, New York, USA. michael.zaugg@ifa.usz.ch
    • Anesthesiology. 2000 Jul 1; 93 (1): 209-18.

    BackgroundVolatile anesthetics are used to provide anesthesia to patients with heart disease under heightened adrenergic drive. The purpose of this study was to test whether volatile anesthetics can inhibit norepinephrine (NE)-induced apoptosis in cardiomyocytes.MethodsRat ventricular cardiomyocytes were exposed to NE (10 microm) alone or in the presence of increasing concentrations of isoflurane and halothane.ResultsIsoflurane at 1.6 minimum alveolar concentration (MAC) (4 +/- 2% [SD]) and halothane at 1.2 MAC (3 +/- 2%) abolished the percentage of cardiomyocytes undergoing NE-induced apoptosis (34 +/- 8%), as assessed by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) (P < 0.0001). Lower concentrations of isoflurane and halothane markedly decreased the number of TUNEL-positive cells. Similarly, isoflurane at 1.6 MAC (5 +/- 3%) and halothane at 1.2 MAC (6 +/- 3%) prevented the increase in annexinV-staining cardiomyocytes (38 +/- 7%; P < 0. 0001). These findings were corroborated with a decreased quantity of NE-induced DNA laddering by volatile anesthetics. Halothane at 1.2 MAC abolished the increase in TUNEL-positive cardiomyocytes exposed to the dihydropyridine Ca2+-channel agonist BAY K-8644 (1 microm) (BAY K-8644 + halothane: 3 +/- 2% vsBAY K-8644: 34 +/- 6%; P < 0. 0001) and the Ca2+-ionophore 4-bromo-A23187 (1 microm) (4-bromo-A23187 + halothane: 2 +/- 2% vs4-bromo-A23187: 13 +/- 4%; P = 0.03). NE treatment increased caspase-9 activity to 197 +/- 62% over control myocytes (P < 0.0001), whereas no caspase-8 activation was detectable. This increase in caspase-9 activity was blocked by isoflurane at 1.6 MAC and halothane at 1.2 MAC.ConclusionsVolatile anesthetics offer significant protection against beta-adrenergic apoptotic death signaling in ventricular cardiomyocytes. The authors present evidence that this protection is mainly mediated through modulation of cellular Ca2+ homeostasis and inhibition of the apoptosis initiator caspase-9.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.