• Invest. Ophthalmol. Vis. Sci. · Aug 2003

    The effect of up- and downregulation of MnSOD enzyme on oxidative stress in human lens epithelial cells.

    • Hironori Matsui, Li-Ren Lin, Ye-Shih Ho, and Venkat N Reddy.
    • Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA.
    • Invest. Ophthalmol. Vis. Sci. 2003 Aug 1; 44 (8): 3467-75.

    PurposeGene knockouts serve as useful experimental models to investigate the role of antioxidant enzymes in protection against oxidative stress in the lens. In the absence of gene knockout animals for Mn-containing superoxide dismutase (MnSOD), the effect of this enzyme on oxidative stress was investigated in a human lens epithelial cell line (SRA 01/04) in which the enzyme was up- or downregulated by transfection with sense and antisense expression vectors for MnSOD.MethodsHuman lens epithelial cells (SRA 01/04) were transfected with plasmids containing sense and antisense human cDNA for MnSOD. The enzyme levels were determined by Western blot analysis and immunocytochemistry. The protective effect of the enzyme against the cytotoxicity of H(2)O(2) was evaluated by cell viability, DNA strand breaks, and morphologic changes observed by transmission electron microscopy. In addition, the protective effect of this enzyme against photochemically induced stress and UVB irradiation in cells was assessed by measuring the damage of cellular DNA.ResultsThe MnSOD level in upregulated cells was three times higher than in downregulated cells, and the enzyme surrounded the nucleus. Cells with elevated enzyme levels were more resistant to the cytotoxic effect of H(2)O(2) with greater cell viability. MnSOD-deficient cells showed dramatic mitochondrial damage when exposed to 50 micro M H(2)O(2) for 1 hour. Similarly, oxidative challenge by H(2)O(2), photochemically generated reactive oxygen species, or UVB irradiation produced greater DNA strand breaks in MnSOD-deficient cells than in those in which the enzyme was upregulated.ConclusionsThese findings demonstrate the protective effect of MnSOD in antioxidant defense of cultured lens epithelial cells. This approach to modulating the enzyme level in cultured cells provides a new experimental model for study of the role of antioxidant enzymes in the lens.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.