-
Scand J Trauma Resus · Jul 2016
Cardiopulmonary responses during the cooling and the extracorporeal life support rewarming phases in a porcine model of accidental deep hypothermic cardiac arrest.
- Guillaume Debaty, Maxime Maignan, Bertrand Perrin, Angélique Brouta, Dorra Guergour, Candice Trocme, Vincent Bach, Stéphane Tanguy, and Raphaël Briot.
- Department of Emergency Medicine, SAMU 38, University Hospital of Grenoble, Grenoble, France. gdebaty@chu-grenoble.fr.
- Scand J Trauma Resus. 2016 Jul 8; 24: 91.
BackgroundThis study aimed to assess cardiac and pulmonary pathophysiological responses during cooling and extracorporeal life support (ECLS) rewarming in a porcine model of deep hypothermic cardiac arrest (DHCA). In addition, we evaluated whether providing a lower flow rate of ECLS during the rewarming phase might attenuate cardiopulmonary injuries.MethodsTwenty pigs were cannulated for ECLS, cooled until DHCA occurred and subjected to 30 min of cardiac arrest. In order to assess the physiological impact of ECLS on cardiac output we measured flow in the pulmonary artery using Doppler echocardiography as well as a modified thermodilution technique using the Swan-Ganz catheter (injection site in the right ventricle). The animals were randomized into two groups during rewarming: a group with a low blood flow rate of 1.5 L/min (LF group) and a group with a normal flow rate of 3.0 L/min (NF group). The ECLS temperature was adjusted to 5 °C above the central core. Cardiac output, hemodynamics and pulmonary function parameters were evaluated.ResultsDuring the cooling phase, cardiac output, heart rhythm and blood pressure decreased continuously. Pulmonary artery pressure tended to increase at 32 °C compared to the initial value (20.2 ± 1.7 mmHg vs. 29.1 ± 5.6 mmHg, p = 0.09). During rewarming, arterial blood pressure was higher in the NF than in the LF group at 20° and 25 °C (p = 0.003 and 0.05, respectively). After rewarming to 35 °C, cardiac output was 3.9 ± 0.5 L/min in the NF group vs. 2.7 ± 0.5 L/min in LF group (p = 0.06). At the end of rewarming under ECLS cardiac output was inversely proportional to the ECLS flow rate. Moreover, the ECLS flow rate did not significantly change pulmonary vascular resistance.DiscussionUsing a newly developed experimental model of DHCA treated by ECLS, we assessed the cardiac and pulmonary pathophysiological response during the cooling phase and the ECLS rewarming phase. Despite lower metabolic need during hypothermia, a low ECLS blood flow rate during rewarming did not improved cardiopulmonary injuries after rewarming.ConclusionA low ECLS flow rate during the rewarming phase did not attenuate pulmonary lesions, increased blood lactate level and tended to decrease cardiac output after rewarming. A normal ECLS flow rate did not increase pulmonary vascular resistance compared to a low flow rate. This experimental model on pigs contributes a number of pathophysiological findings relevant to the rewarming strategy for patients who have undergone accidental DHCA.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.