• Journal of biomechanics · Jan 2012

    Clonus is explained from increased reflex gain and enlarged tissue viscoelasticity.

    • Erwin de Vlugt, Jurriaan H de Groot, Wessel H J Wisman, and Carel G M Meskers.
    • Department of Mechanical Engineering, Laboratory of Neuromuscular Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands. e.devlugt@tudelft.nl
    • J Biomech. 2012 Jan 3; 45 (1): 148-55.

    AbstractUpper motor neuron diseases (UMND), such as stroke and spinal cord injury (SCI), are assumed to produce alterations in muscle tissue in association with neural damage. Distinguishing between these two factors is of clinical importance in choosing appropriate therapy. We studied the effect of changes in the gain of the Ia reflex pathway and tissue viscoelasticity on the emergence, frequency, and persistence of ankle clonus: a clinically significant, involuntary oscillatory movement disorder. Monte Carlo simulations were performed to explain our experimental observations in patients with stroke (n = 3) and SCI (n = 4) using a nonlinear antagonistic muscle model of the human ankle joint. Ia reflex gain was varied by changing motor unit pool threshold and gain, and passive tissue viscosity and elasticity were varied by changing optimal muscle length. Tissue viscoelasticity appeared to have a strong effect on the emergence and persistence of clonus. Observed frequencies of ankle movement, prior to and after the experimental intervention of a sudden damper, was predicted by the model. The simulations revealed that reflex gains were largest in patients with the largest tissue viscoelasticity. We conclude that ankle clonus in stroke and SCI is the result of a combination of, and suggests a relation between, (i) a decrease in threshold and an increase in gain of the motor unit pool and (ii) a decrease in optimal muscle length.Copyright © 2011 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.