-
- Jerrold Lerman, Doron Feldman, Ronen Feldman, John Moser, Leeshi Feldman, Madhankumar Sathyamoorthy, Kenneth Deitch, and Uri Feldman.
- Department of Anesthesia, Women and Children's Hospital of Buffalo, 219 Bryant St, Buffalo, NY, 14209, USA. jerrold.lerman@gmail.com.
- Can J Anaesth. 2016 Oct 1; 63 (10): 1154-1160.
PurposeWe sought to develop a temperature-based respiratory instrument to measure respiration noninvasively outside critical care settings.MethodRespiratory temperature profiles were recorded using a temperature-based noninvasive instrument comprised of three rapid responding medical-grade thermistors-two in close proximity to the mouth/nose (sensors) and one remote to the airway (reference). The effect of the gas flow rate on the amplitude of the tracings was determined. The temperature-based instrument, the Linshom Respiratory Monitoring Device (LRMD) was mounted to a face mask and positioned on a mannequin face. Respiratory rates of 5-40 breaths·min(-1) were then delivered to the mannequin face in random order using artificial bellows (IngMar Lung Model). Data from the sensors were collected and compared with the bellows rates using least squares linear regression and coefficient of determination. The investigators breathed at fixed rates of 0-60 breaths·min(-1) in synchrony with a metronome as their respiratory temperature profiles were recorded from sensors mounted to either a face mask or nasal prongs. The recordings were compared with a contemporaneously recorded sidestream capnogram from a CARESCAPE GEB450 Monitor. The extracted respiratory rates from the LRMD tracings and capnograms were compared using linear regression with a coefficient of determination and a Bland-Altman plot.ResultsThe amplitude of the sensor tracings was independent of the oxygen flow rate. Respiratory rates from the new temperature-based sensor were synchronous and correlated identically with both the artificial bellows (r(2) = 0.9997) and the capnometer mounted to both the face mask and nasal prongs (r(2) = 0.99; bias = -0.17; 95% confidence interval, -2.15 to 1.8).ConclusionsRespiratory rates using the LRMD, a novel temperature-based respiratory instrument, were consistent with those using capnometry.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.