-
- William J Anderst, William F Donaldson, Joon Y Lee, and James D Kang.
- Department of Orthopaedic Surgery, University of Pittsburgh, 3820 South Water St, Pittsburgh, PA 15203, USA. Electronic address: anderst@pitt.edu.
- Spine J. 2014 Jul 1; 14 (7): 1221-7.
Background ContextA precise and comprehensive definition of "normal" in vivo cervical kinematics does not exist due to high intersubject variability and the absence of midrange kinematic data. In vitro test protocols and finite element models that are validated using only end range of motion data may not accurately reproduce continuous in vivo motion.PurposeThe primary objective of this study was to precisely quantify cervical spine intervertebral kinematics during continuous, functional flexion-extension in asymptomatic subjects. The advantages of assessing continuous intervertebral kinematics were demonstrated by comparing asymptomatic controls with patients with single-level anterior arthrodesis.Study DesignCervical spine kinematics were determined during continuous in vivo flexion-extension in a clinically relevant age group of asymptomatic controls and a group of patients with C5-C6 arthrodesis.Patient SampleThe patient sample consisted of 6 patients with single-level (C5-C6) anterior arthrodesis (average age: 48.8±6.9 years; 1 male, 5 female; 7.6±1.2 months postsurgery) and 18 asymptomatic control subjects of similar age (average age: 45.6±5.8 years; 5 male, 13 female).Outcome MeasuresOutcome measures included the physiologic measure of continuous kinematic motion paths at each cervical motion segment (C2-C7) during flexion-extension.MethodsParticipants performed flexion-extension while biplane radiographs were collected at 30 images per second. A previously validated tracking process determined three-dimensional vertebral positions with submillimeter accuracy. Continuous flexion-extension rotation and anterior-posterior translation motion paths were adjusted for disc height and static orientation of each corresponding motion segment.ResultsIntersubject variability in flexion-extension angle was decreased 15% to 46% and intersubject variability in anterior-posterior translation was reduced 14% to 33% after adjusting for disc height and static orientation angle. Average intersubject variability in continuous motion paths was 1.9° in flexion-extension and 0.6 mm in translation. Third-order polynomial equations were determined to precisely describe the continuous flexion-extension and anterior-posterior translation motion path at each motion segment (all R2>0.99).ConclusionsA significant portion of the intersubject variability in cervical kinematics can be explained by the disc height and the static orientation of each motion segment. Clinically relevant information may be gained by assessing intervertebral kinematics during continuous functional movement rather than at static, end range of motion positions. The fidelity of in vitro cervical spine mechanical testing protocols may be evaluated by comparing in vitro kinematics to the continuous motion paths presented.Copyright © 2014 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.