-
- Víctor J Asensio, Antonio Miralles, and Jesús A García-Sevilla.
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Ctra Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain.
- Eur. J. Pharmacol. 2006 Jun 6; 539 (1-2): 49-56.
AbstractOpioid addiction modulates the extracellular signal-regulated kinase (ERK) leading to synaptic plasticity in the brain. ERK1/2 are stimulated by mitogen-activated protein kinase kinases (MEK1/2), but little is known about the regulation of MEK activity by opioid drugs. This study was designed to assess the acute effects of selective mu-, delta-, and kappa-opioid receptor agonists, as well as those induced by chronic morphine and opioid withdrawal, on the content of phosphorylated MEK1/2 in the rat brain. Sufentanil (1-30 microg/kg, 30-120 min) induced dose- and time-dependent increases in MEK1/2 phosphorylation in the cerebral cortex and corpus striatum (30-177%) through a naloxone-sensitive mechanism. Morphine (100 mg/kg, 2 h) also augmented MEK1/2 phosphorylation in the both brain regions (50-70%). Similarly, the selective delta-opioid receptor agonist SNC-80 (10 mg/kg, 30 min) increased MEK1/2 activity in the cortex (60%) that was antagonized by naltrindole. In contrast, the selective kappa-opioid receptor agonist (-)-U50488H (10 mg/kg, 30-120 min) did not modify significantly MEK1/2 phosphorylation in the cortex. Chronic morphine (10-100 mg/kg, 5 days) was not associated with alterations in the content of phosphorylated MEK1/2 in the brain (induction of tachyphylaxis to the acute effects). In morphine-dependent rats, however, naloxone (2 mg/kg)-precipitated withdrawal (2-6 h) induced robust increases in MEK1/2 phosphorylation in cortex (27-49%) and striatum (83-123%). Spontaneous opioid withdrawal (24 h) in morphine-dependent rats did not alter MEK1/2 activity in the brain. The findings may be relevant in the context of the pivotal role played by the MEK/ERK pathway in various long-lasting forms of synaptic plasticity associated with opioid addiction.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.