• Epilepsy research · Feb 2010

    Hippocampal damage after intra-amygdala kainic acid-induced status epilepticus and seizure preconditioning-mediated neuroprotection in SJL mice.

    • Katsuhiro Tanaka, Eva M Jimenez-Mateos, Satoshi Matsushima, Waro Taki, and David C Henshall.
    • Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
    • Epilepsy Res. 2010 Feb 1; 88 (2-3): 151-61.

    AbstractExposure of the brain to a stressful stimulus that is sub-threshold for permanent injury can temporarily protect against cell death during a subsequent and otherwise damaging insult. One or more brief, non-harmful seizure episode(s) (seizure preconditioning) can dramatically reduce hippocampal damage when given prior to status epilepticus (epileptic tolerance). We recently reported that status epilepticus-induced hippocampal damage in C57BL/6 mice could be reduced by approximately 50% when preceded 24h earlier by a brief, non-injurious generalized seizure induced by 15mg/kg systemic kainic acid (KA). Since other mouse strains might display different vulnerability to either seizure preconditioning or status epilepticus, we investigated whether epileptic tolerance could be acquired in another strain. SJL mice, reported to display greater seizure sensitivity to systemic KA, received intra-amygdala microinjection of KA to trigger status epilepticus. Intracerebral recordings confirmed evoked seizures involved the ipsilateral hippocampus. Status epilepticus produced hippocampal damage which mainly affected the ipsilateral CA3 and hilus; a pattern similar to C57BL/6 mice. The damage extended through the full rostro-caudal extent of the hippocampal formation. Seizure preconditioning using 20mg/kg systemic KA, but not 15mg/kg, significantly reduced hippocampal damage after status epilepticus by 37% in the dorsal hippocampus and by 65% in the ventral hippocampus. These studies suggest status epilepticus induced by intra-amygdala KA in SJL mice models aspects of the pathophysiology of human mesial temporal sclerosis. Moreover, seizure preconditioning effectively produces neuroprotection in SJL mice, further establishing epileptic tolerance as a conserved endogenous neuroprotection paradigm.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.