-
- Sara Finocchietti, Thomas Graven-Nielsen, and Lars Arendt-Nielsen.
- Pain Res Manag. 2015 Jan 1; 20 (1): 293429-34.
BackgroundMusculoskeletal pain is often associated with a nonhomogeneous distribution of mechanical hyperalgesia. Consequently, new methods able to detect this distribution are needed.ObjectiveTo develop and test a new method for assessing muscle hyperalgesia with high temporal and spatial resolution that provides complementary information compared with information obtained by traditional static pressure algometry.MethodsThe dynamic pressure algometer was tested bilaterally on the tibialis anterior muscle in 15 healthy subjects and compared with static pressure algometry. The device consisted of a wheel that was rolled over the muscle tissue with a fixed velocity and different predefined forces. The pain threshold force was determined and pain intensity to a fixed-force stimulation was continuously rated on a visual analogue scale while the wheel was rolling over the muscle. The pressure pain sensitivity was evaluated before, during, and after muscle pain and hyperalgesia induced unilaterally by either injection of hypertonic saline (0.5 mL, 6%) into the tibialis anterior or eccentric exercise evoking delayed-onset muscle soreness (DOMS).ResultsThe intraclass correlation coefficient was >0.88 for the dynamic thresholds; thus, the method was reliable. Compared with baseline, both techniques detected hyperalgesia at the saline injection site and during DOMS (P<0.05). The dynamic algometer also detected the widespread, patchy distribution of sensitive loci during DOMS, which was difficult to evaluate using static pressure algometry.Discussion And ConclusionThe present study showed that dynamic pressure algometry is a reliable tool for evaluating muscle hyperalgesia (threshold and pain rating) with high temporal and spatial resolution. It can be applied as a simple clinical bed-side test and as a quantitative tool in pharmacological profiling studies.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.