• J R Soc Med · May 2011

    Multicenter Study

    Can an electronic prescribing system detect doctors who are more likely to make a serious prescribing error?

    • Jamie J Coleman, Karla Hemming, Peter G Nightingale, Ian R Clark, Mary Dixon-Woods, Robin E Ferner, and Richard J Lilford.
    • College of Medical and Dental Sciences, University of Birmingham, UK. Jamie.coleman@uhb.nhs.uk
    • J R Soc Med. 2011 May 1; 104 (5): 208-18.

    ObjectivesWe aimed to assess whether routine data produced by an electronic prescribing system might be useful in identifying doctors at higher risk of making a serious prescribing error.DesignRetrospective analysis of prescribing by junior doctors over 12 months using an electronic prescribing information and communication system. The system issues a graded series of prescribing alerts (low-level, intermediate, and high-level), and warnings and prompts to respond to abnormal test results. These may be overridden or heeded, except for high-level prescribing alerts, which are indicative of a potentially serious error and impose a 'hard stop'.SettingA large teaching hospital.ParticipantsAll junior doctors in the study setting.Main Outcome MeasuresRates of prescribing alerts and laboratory warnings and doctors' responses.ResultsAltogether 848,678 completed prescriptions issued by 381 doctors (median 1538 prescriptions per doctor, interquartile range [IQR] 328-3275) were analysed. We identified 895,029 low-level alerts (median 1033 per 1000 prescriptions per doctor, IQR 903-1205) with a median of 34% (IQR 31-39%) heeded; 172,434 intermediate alerts (median 196 per 1000 prescriptions per doctor, IQR 159-266), with a median of 23% (IQR 16-30%) heeded; and 11,940 high-level 'hard stop' alerts. Doctors vary greatly in the extent to which they trigger and respond to alerts of different types. The rate of high-level alerts showed weak correlation with the rate of intermediate prescribing alerts (correlation coefficient, r = 0.40, P = <0.001); very weak correlation with low-level alerts (r = 0.12, P = 0.019); and showed weak (and sometimes negative) correlation with propensity to heed test-related warnings or alarms. The degree of correlation between generation of intermediate and high-level alerts is insufficient to identify doctors at high risk of making serious errors.ConclusionsRoutine data from an electronic prescribing system should not be used to identify doctors who are at risk of making serious errors. Careful evaluation of the kinds of quality assurance questions for which routine data are suitable will be increasingly valuable.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.