-
J. Cereb. Blood Flow Metab. · Feb 2005
Development of posttraumatic hyperthermia after traumatic brain injury in rats is associated with increased periventricular inflammation.
- Hilaire J Thompson, Rachel C Hoover, Nancy C Tkacs, Kathryn E Saatman, and Tracy K McIntosh.
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
- J. Cereb. Blood Flow Metab. 2005 Feb 1; 25 (2): 163-76.
AbstractPosttraumatic hyperthermia (PTH) is a noninfectious elevation in body temperature that negatively influences outcome after traumatic brain injury (TBI). We sought to (1) characterize a clinically relevant model and (2) investigate potential cellular mechanisms of PTH. In study I, body temperature patterns were analyzed for 1 week in male rats after severe lateral fluid percussion (FP) brain injury (n=75) or sham injury (n=17). After injury, 27% of surviving animals experienced PTH, while 69% experienced acute hypothermia with a slow return to baseline. A profound blunting or loss of circadian rhythmicity (CR) that persisted up to 5 days after injury was experienced by 75% of brain-injured animals. At 2 and 7 days after injury, patterns of cell loss and inflammation were assessed in selected brain thermoregulatory and circadian centers. Significant cell loss was not observed, but PTH was associated with inflammatory changes in the hypothalamic paraventricular nucleus (PVN) by one week after injury. In brain-injured animals with altered CR, reactive astrocytes were bilaterally localized in the suprachiasmatic nucleus (SCN) and the PVN. Occasional IL-1beta+/ED-1+ macrophages/microglia were observed in the PVN and SCN exclusively in brain-injured animals developing PTH. In animals with PTH there was a significant positive correlation (r=0.788, P<0.01) between the degree of postinjury hyperthermia and the total number of cells positive for inflammatory markers within selected thermoregulatory and circadian nuclei. In study II, a separate group of animals underwent the same injury and temperature monitoring paradigm as in study I, but had additional physiologic data obtained, including vital signs, arterial blood gases, white blood cell counts, and C-reactive protein levels. All parameters remained within normal ranges after injury. These data suggest that PTH and the alteration in CR of temperature may be due, in part, to acute reactive astrocytosis and inflammation in hypothalamic centers responsible for both thermoregulation and CR.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.