-
Targeting mitochondria with methylene blue protects mice against acetaminophen-induced liver injury.
- Kang Kwang Lee, Naoki Imaizumi, Sally R Chamberland, Nathan N Alder, and Urs A Boelsterli.
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT.
- Hepatology. 2015 Jan 1; 61 (1): 326-36.
UnlabelledAcetaminophen (APAP) overdose is a frequent cause of drug-induced liver injury and the most frequent cause of acute liver failure in the Western world. Previous studies with mouse models have revealed that impairment of mitochondrial respiration is an early event in the pathogenesis, but the exact mechanisms have remained unclear, and therapeutic approaches to specifically target mitochondria have been insufficiently explored. Here, we found that the reactive oxidative metabolite of APAP, N-acetyl-p-benzoquinoneimine (NAPQI), caused the selective inhibition of mitochondrial complex II activity by >90% in both mouse hepatic mitochondria and yeast-derived complexes reconstituted into nanoscale model membranes, as well as the decrease of succinate-driven adenosine triphosphate (ATP) biosynthesis rates. Based on these findings, we hypothesized that methylene blue (MB), a mitochondria-permeant redox-active compound that can act as an alternative electron carrier, protects against APAP-induced hepatocyte injury. We found that MB (<3 µM) readily accepted electrons from NAPQI-altered, succinate-energized complex II and transferred them to cytochrome c, restoring ATP biosynthesis rates. In cultured mouse hepatocytes, MB prevented the mitochondrial permeability transition and loss of intracellular ATP without interfering with APAP bioactivation. In male C57BL/6J mice treated with APAP (450 mg/kg, intraperitoneally [IP]), MB (10 mg/kg, IP, administered 90 minutes post-APAP) protected against hepatotoxicity, whereas mice treated with APAP alone developed massive centrilobular necrosis and increased serum alanine aminotransferase activity. APAP treatment inhibited complex II activity ex vivo, but did not alter the protein expression levels of subunits SdhA or SdhC after 4 hours.ConclusionMB can effectively protect mice against APAP-induced liver injury by bypassing the NAPQI-altered mitochondrial complex II, thus alleviating the cellular energy crisis. Because MB is a clinically used drug, its potential application after APAP overdose in patients should be further explored.© 2014 by the American Association for the Study of Liver Diseases.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.