• J Bone Joint Surg Am · Mar 2011

    Internal fixation of type-C distal femoral fractures in osteoporotic bone: surgical technique.

    • Thomas Mückley, Dirk Wähnert, Konrad L Hoffmeier, Geert von Oldenburg, Rosemarie Fröber, and Gunther O Hofmann.
    • Department of Traumatology, Hand and Reconstructive Surgery, Friedrich Schiller University Jena, Erlanger Allee 101, D-07747 Jena, Germany.
    • J Bone Joint Surg Am. 2011 Mar 1; 93 Suppl 1: 40-53.

    BackgroundFixation of distal femoral fractures remains a challenge, especially in osteoporotic bone. This study was performed to investigate the biomechanical stability of four different fixation devices for the treatment of comminuted distal femoral fractures in osteoporotic bone.MethodsFour fixation devices were investigated biomechanically under torsional and axial loading. Three intramedullary nails, differing in the mechanism of distal locking (with two lateral-to-medial screws in one construct, one screw and one spiral blade in another construct, and four screws [two oblique and two lateral-to-medial with medial nuts] in the third), and one angular stable plate were used. All constructs were tested in an osteoporotic synthetic bone model of an AO/ASIF type 33-C2 fracture. Two nail constructs (the one-screw and spiral blade construct and the four-screw construct) were also compared under axial loading in eight pairs of fresh-frozen human cadaveric femora.ResultsThe angular stable plate constructs had significantly higher torsional stiffness than the other constructs; the intramedullary nail with four-screw distal locking achieved nearly comparable results. Furthermore, the four-screw distal locking construct had the greatest torsional strength. Axial stiffness was also the highest for the four-screw distal locking device; the lowest values were achieved with the angular stable plate. The ranking of the constructs for axial cycles to failure was the four-screw locking construct, with the highest number of cycles, followed by the angular stable plate, the spiral blade construct, and two-screw fixation. The findings in the human cadaveric bone were comparable with those in the synthetic bone model. Failure modes under cyclic axial load were comparable for the synthetic and human bone models.ConclusionsThe findings of this study support the concept that, for intramedullary nails, the kind of distal interlocking pattern affects the stabilization of distal femoral fractures. Four-screw distal locking provides the highest axial stability and nearly comparable torsional stability to that of the angular stable plate; the four-screw distal interlocking construct was found to have the best combined (torsional and axial) biomechanical stability.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.