-
- Marina G Mozhayeva, Maria F Matos, Xinran Liu, and Ege T Kavalali.
- Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, USA.
- J. Neurosci. 2004 Feb 18; 24 (7): 1680-8.
AbstractStudies on the mechanisms that underlie the function of small central presynaptic terminals have been hampered by the inaccessibility of these synapses to soluble reagents. Here, we permeabilized hippocampal synapses in culture, manipulated their interior, and monitored the resulting changes in vesicle mobilization with the styryl dye FM2-10. Using this method, we found that 1 microm Ca2+ after incubation with GTP or GTP-gamma-S could mobilize approximately 90% of the total recycling pool, whereas 1 microm Ca2+ application after dialysis of permeabilized synapses with GDP-beta-S mobilized approximately 30% of the recycling vesicles, presumably corresponding to the readily releasable pool. In electron micrographs of permeabilized hippocampal synapses stimulated with 1 microm Ca2+, we could detect significant vesicle depletion after preincubation with GTP-gamma-S, whereas preincubation with GDP-beta-S left the total vesicle pool relatively intact. Taken together, in this system replenishment of the readily releasable pool by the reserve vesicles was strictly GTP dependent. In contrast, vesicle replenishment and release did not require ATP or N-ethylmaleimide-sensitive factor (NSF); however, this process involved formation of new soluble NSF-attachment protein receptor (SNARE) complexes as judged by its sensitivity to tetanus toxin. These results suggest that in hippocampal synapses, vesicle mobilization and replenishment of the readily releasable pool require GTP and Ca2+ but do not necessitate ATP-dependent priming and SNARE recycling.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.