• J. Alzheimers Dis. · Feb 2005

    Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes?

    • Eric Steen, Benjamin M Terry, Enrique J Rivera, Jennifer L Cannon, Thomas R Neely, Rose Tavares, X Julia Xu, Jack R Wands, and Suzanne M de la Monte.
    • Department of Pathology, Rhode Island Hospital and Brown Medical School, Providence, RI 02903, USA.
    • J. Alzheimers Dis. 2005 Feb 1; 7 (1): 63-80.

    AbstractThe neurodegeneration that occurs in sporadic Alzheimer's disease (AD) is consistently associated with a number of characteristic histopathological, molecular, and biochemical abnormalities, including cell loss, abundant neurofibrillary tangles and dystrophic neurites, amyloid-beta deposits, increased activation of pro-death genes and signaling pathways, impaired energy metabolism/mitochondrial function, and evidence of chronic oxidative stress. The general inability to convincingly link these phenomena has resulted in the emergence and propagation of various heavily debated theories that focus on the role of one particular element in the pathogenesis of all other abnormalities. However, the accumulating evidence that reduced glucose utilization and deficient energy metabolism occur early in the course of disease, suggests a role for impaired insulin signaling in the pathogenesis of AD. The present work demonstrates extensive abnormalities in insulin and insulin-like growth factor type I and II (IGF-I and IGF-II) signaling mechanisms in brains with AD, and shows that while each of the corresponding growth factors is normally made in central nervous system (CNS) neurons, the expression levels are markedly reduced in AD. These abnormalities were associated with reduced levels of insulin receptor substrate (IRS) mRNA, tau mRNA, IRS-associated phosphotidylinositol 3-kinase, and phospho-Akt (activated), and increased glycogen synthase kinase-3beta activity and amyloid precursor protein mRNA expression. The strikingly reduced CNS expression of genes encoding insulin, IGF-I, and IGF-II, as well as the insulin and IGF-I receptors, suggests that AD may represent a neuro-endocrine disorder that resembles, yet is distinct from diabetes mellitus. Therefore, we propose the term, "Type 3 Diabetes" to reflect this newly identified pathogenic mechanism of neurodegeneration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…