• Anesthesia and analgesia · Oct 2016

    Synergistic Modulation of γ-Aminobutyric Acid Type A Receptor-Mediated Synaptic Inhibition in Cortical Networks by Allopregnanolone and Propofol.

    • Berthold Drexler, Monika Balk, and Bernd Antkowiak.
    • From the *Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Experimental Anesthesiology Section, Eberhard Karls University, Tübingen, Germany; and †Werner Reichardt Centre for Integrative Neuroscience, University Department of Neurology, Eberhard Karls University, Tübingen, Germany.
    • Anesth. Analg. 2016 Oct 1; 123 (4): 877-83.

    BackgroundThe neuroactive steroid allopregnanolone (ALLO) is an endogenous allosteric modulator of γ-aminobutyric acid type A (GABAA) receptors. There is evidence that ALLO, at physiologically relevant concentrations, modulates GABAA receptor function in the cerebral cortex. The widely used anesthetic agent propofol and ALLO share a similar mode of molecular action. Here, we ask how GABAA receptor-mediated synaptic inhibition and action potential firing of neurons in cultured cortical slices are altered by either ALLO or propofol or by coapplying both agents.MethodsWe explored the effects of ALLO and propofol on spontaneous action potential activity of neocortical neurons in organotypic slices cultured from C57BL6 mice by performing extracellular multiunit recordings. Furthermore, we carried out whole-cell voltage-clamp experiments to quantify the drug effects on GABAA receptor-mediated tonic and phasic currents.ResultsWe found that ALLO (100 nM) decreased multiunit action potential firing of neocortical neurons by approximately 21%. Moreover, the duration of GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) was prolonged (mean Δdecay time prolongation: 12.9 ± 2.2 milliseconds; n = 23), and a bicuculline-sensitive tonic current was induced (mean Δbaseline shift: -24.6 ± 13.6 pA; P = .002; n = 6). A subanesthetic concentration of propofol (250 nM) decreased the discharge rates of cortical neurons to a similar degree as ALLO (100 nM). ALLO and propofol administered in combination acted in an additive manner to reduce action potential firing. However, during ALLO administration, propofol was significantly more effective in enhancing GABAergic synaptic transmission. Propofol (250 nM) prolonged the inhibitory postsynaptic currents decay times by 10.4 ± 6.1 milliseconds (n = 9) with ALLO added to the bathing solution; in the absence of ALLO, however, propofol prolonged the decay time by only 3.8 ± 2 milliseconds (n = 13).ConclusionsIn cortical neurons, GABAA receptor-mediated synaptic transmission is potentiated by ALLO and propofol in a synergistic manner, whereas the effects on spontaneous action potential activity appear additive. A coapplication of neurosteroids and propofol in general anesthesia and intensive care medicine may open new ways to reduce anesthetic dose requirements and, thus, avoid undesired anesthetic-induced side effects.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.