-
Comparative Study
Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine.
- Ralph Kothe, Wolfgang Rüther, Erich Schneider, and Berend Linke.
- Department of Orthopedics, University Hospital Hamburg-Eppendorf, Hamburg, Germany. kothe@uke.uni-hamburg.de
- Spine. 2004 Sep 1; 29 (17): 1869-75.
Study DesignAn in vitro biomechanical study to compare 2 different dorsal screw fixation techniques in the cervical spine with respect to primary stability and stability after cyclic loading.ObjectivesTo investigate if the biomechanical stability is better in pedicle screw or in lateral mass fixation.Summary Of Background DataIn patients with poor bone quality who require multisegmental fixations, the current dorsal stabilization procedures in the subaxial cervical spine using lateral mass screws are often insufficient. Cervical pedicle screw fixation has been suggested as an alternative procedure, but there are still limited data available on the biomechanical differences between pedicle screw and lateral mass fixation.MethodsA severe multilevel discoligamentous instability was created in 8 human cervical spine specimens (C2-C7). Dorsal stabilization was performed with the assistance of computer navigation (SurgiGate, Medivison, Switzerland) using either lateral mass or pedicle screw fixation. In the first part of the study, primary stability was measured by means of a multidirectional flexibility test. Then, specimens were divided into 2 groups, randomized for bone mineral density. Cyclic loading was applied with sinusoidal loads in flexion/extension (1000 cycles, +/-1.5 Nm, 0.1 Hz). Mechanical behavior of the specimens was determined by a flexibility test before and after the application of cyclic loads. Data analysis was performed by calculating the ranges of motion, and statistical differences were determined with the t test for group comparison.ResultsPedicle screw fixation showed a significantly higher stability in lateral bending (pedicle screw range of motion 0.86 +/- 0.31 degrees; lateral mass range of motion 1.43 +/- 0.62 degrees; P = 0.037). No significant differences were seen in flexion/extension and axial rotation. After cyclic loading, the decrease in stability was less with pedicle screw fixation in all load directions. Differences in the decrease of stability were statistically significant in flexion/extension (pedicle screw 95.4 +/- 9.4%; lateral mass 70.5 +/- 9.8%; P = 0.010) and lateral bending (pedicle screw 105.3 +/- 5.0%; lateral mass 84.2 +/- 13.6%; P = 0.046), whereas there was no significant difference in axial rotation.ConclusionsThe major finding of the current study was the higher stability of pedicle screws over lateral mass fixation with respect to primary stability and stability after cyclic loading. From a biomechanical point of view the use of pedicle screws in the subaxial cervical spine seems justified in patients with poor bone quality and need for multisegmental fixation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.