• J. Biol. Chem. · Feb 2011

    A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic.

    • Jiafu Wang, Tomas H Zurawski, Jianghui Meng, Gary Lawrence, Weredeselam M Olango, David P Finn, Larry Wheeler, and J Oliver Dolly.
    • From the International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
    • J. Biol. Chem. 2011 Feb 25; 286 (8): 6375-85.

    AbstractBlockade of neurotransmitter release by botulinum neurotoxin type A (BoNT(A)) underlies the severe neuroparalytic symptoms of human botulism, which can last a few years. The structural basis for this remarkable persistence remains unclear. Herein, recombinant BoNT(A) was found to match the neurotoxicity of that from Clostridium botulinum, producing persistent cleavage of synaptosomal-associated protein of 25 kDa (SNAP-25) and neuromuscular paralysis. When two leucines near the C terminus of the protease light chain of A (LC(A)) were mutated, its inhibition of exocytosis was followed by fast recovery of intact SNAP-25 in cerebellar neurons and neuromuscular transmission in vivo. Deletion of 6-7 N terminus residues diminished BoNT(A) activity but did not alter the longevity of its SNAP-25 cleavage and neuromuscular paralysis. Furthermore, genetically fusing LC(E) to a BoNT(A) enzymically inactive mutant (BoTIM(A)) yielded a novel LC(E)-BoTIM(A) protein that targets neurons, and the BoTIM(A) moiety also delivers and stabilizes the inhibitory LC(E), giving a potent and persistent cleavage of SNAP-25 with associated neuromuscular paralysis. Moreover, its neurotropism was extended to sensory neurons normally insensitive to BoNT(E). LC(E-)BoTIM(A)(AA) with the above-identified dileucine mutated gave transient neuromuscular paralysis similar to BoNT(E), reaffirming that these residues are critical for the persistent action of LC(E)-BoTIM(A) as well as BoNT(A). LC(E)-BoTIM(A) inhibited release of calcitonin gene-related peptide from sensory neurons mediated by transient receptor potential vanilloid type 1 and attenuated capsaicin-evoked nociceptive behavior in rats, following intraplantar injection. Thus, a long acting, versatile composite toxin has been developed with therapeutic potential for pain and conditions caused by overactive cholinergic nerves.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.