• Experimental physiology · Aug 2008

    Comparative Study

    Iontophoretic beta-adrenergic stimulation of human sweat glands: possible assay for cystic fibrosis transmembrane conductance regulator activity in vivo.

    • A K M Shamsuddin, M M Reddy, and P M Quinton.
    • Department of Pediatrics, UC San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0831, USA.
    • Exp. Physiol. 2008 Aug 1; 93 (8): 969-81.

    AbstractWith the advent of numerous candidate drugs for therapy in cystic fibrosis (CF), there is an urgent need for easily interpretable assays for testing their therapeutic value. Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) abolished beta-adrenergic but not cholinergic sweating in CF. Therefore, the beta-adrenergic response of the sweat gland may serve both as an in vivo diagnostic tool for CF and as a quantitative assay for testing the efficacy of new drugs designed to restore CFTR function in CF. Hence, with the objective of defining optimal conditions for stimulating beta-adrenergic sweating, we have investigated the components and pharmacology of sweat secretion using cell cultures and intact sweat glands. We studied the electrical responses and ionic mechanisms involved in beta-adrenergic and cholinergic sweating. We also tested the efficacy of different beta-adrenergic agonists. Our results indicated that in normal subjects the cholinergic secretory response is mediated by activation of Ca(2+)-dependent Cl(-) conductance as well as K(+) conductances. In contrast, the beta-adrenergic secretory response is mediated exclusively by activation of a cAMP-dependent CFTR Cl(-) conductance without a concurrent activation of a K(+) conductance. Thus, the electrochemical driving forces generated by beta-adrenergic agonists are significantly smaller compared with those generated by cholinergic agonists, which in turn reflects in smaller beta-adrenergic secretory responses compared with cholinergic secretory responses. Furthermore, the beta-adrenergic agonists, isoproprenaline and salbutamol, induced sweat secretion only when applied in combination with an adenylyl cyclase activator (forskolin) or a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine, aminophylline or theophylline). We surmise that to obtain consistent beta-adrenergic sweat responses, levels of intracellular cAMP above that achievable with a beta-adrenergic agonist alone are essential. beta-Adrenergic secretion can be stimulated in vivo by concurrent iontophoresis of these drugs in normal, but not in CF, subjects.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.