• Paediatric anaesthesia · Nov 2016

    Review

    An introduction to physiologically-based pharmacokinetic models.

    • Richard N Upton, David J R Foster, and Ahmad Y Abuhelwa.
    • Australian Centre for Pharmacometrics and Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia. richard.upton@unisa.edu.au.
    • Paediatr Anaesth. 2016 Nov 1; 26 (11): 1036-1046.

    AbstractPhysiologically-based pharmacokinetic (PBPK) models represent drug kinetics in one or more 'real' organs (and hence require submodels of organs/tissues) and they describe 'whole-body' kinetics by joining together submodels with drug transport by blood flow as dictated by anatomy. They attempt to reproduce 'measureable' physiological and/or pharmacokinetic processes rather than more abstract rate constants and volumes. PBPK models may be built using a 'bottom-up' approach, where parameters are chosen from first principles, literature, or in vitro data as opposed to a 'top-down' approach, where all parameters are estimated from data. The basic principles of PBPK models are described, focusing on the equations for three individual organs: a single flow-limited compartment describing distribution only, a membrane-limited compartment describing distribution, and a single flow-limited compartment with elimination. These organ models are linked to make a basic three-compartment physiological model of the whole body. PBPK models are particularly suited to scaling kinetics across body size (e.g., adult to neonate) and species (e.g., animal to first-in-man) as physiology and pharmacology can be represented by independent parameters. Maturation models can be incorporated as for compartmental models. PBPK models are now available in commercial software packages, and are perhaps now more accessible than ever. Alternatively, even complex PBPK models can be represented in generic differential equation-solving software using the simple principles described here. The relative ease of constructing the code for PBPK models belies the most difficult aspect of their implementation-collecting, collating, and justifying the data used to parameterize the model.© 2016 John Wiley & Sons Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…