• Neuromodulation · Apr 2017

    Response of Rat Tibia to Prolonged Unloading Under the Influence of Electrical Stimulation at the Dorsal Root Ganglion.

    • Roy Yuen-Chi Lau, Xing Qian, Kai-Ting Po, Lu-Ming Li, and Xia Guo.
    • Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Hong Kong, SAR, China.
    • Neuromodulation. 2017 Apr 1; 20 (3): 284-289.

    PurposeImmobilization of weight bearing skeletons or microgravity results in disuse osteoporosis in both human and animals. Our previous study demonstrated that electrical stimulation at the dorsal root ganglion (DRG) with an implantable micro-electrical stimulation system (IMESS) could trigger secretion of bone anabolic calcitonin gene-related peptide (CGRP) and prevent bone loss in a short-term hindlimb unloading rat model. This study was designed to further investigate whether electrical stimulation to the DRG could prevent bone loss due to prolonged unloading.MethodsEighteen adult rats were randomly assigned into three groups: cage control (CC), hindlimb unloading (HU), and hindlimb unloading with electrical stimulation (HUES). Electrical stimulation was applied via IMESS to the right DRGs at vertebral levels L4-L6 in HUES group for 6 weeks.ResultsFollowing unloading for 6 weeks, proximal tibia metaphysis was shown 64.0% decrease in bone mineral content (BMC) and 47.0% decrease in bone mineral density (BMD) in HU group while significant reduced bone lose with 2.7% increase in total BMC and only 9.2% decrease in total BMD in HUES group. Diaphyseal BMD decreased significantly in both HU and HUES group as compared with CC group. There was enhancement of CGRP expression in the DRGs in HUES group.ConclusionThis experimental study proved the proposed concept using electrical stimulation at the DRG for prevention of disuse-induced bone loss in a rat hindlimb suspension model.© 2016 International Neuromodulation Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.