• J Neuroimaging · Jan 2017

    Correcting for Frequency Drift in Clinical Brain MR Spectroscopy.

    • Benjamin C Rowland, Huijun Liao, Fatah Adan, Laura Mariano, John Irvine, and Alexander P Lin.
    • Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Boston, MA.
    • J Neuroimaging. 2017 Jan 1; 27 (1): 23-28.

    PurposeAveraging multiple repetitions to improve signal-to-noise ratio is common practice in magnetic resonance spectroscopy (MRS). However, temporal variations in scanner B0 due to motion or gradient heating may cause spectra to become misaligned, broadening and distorting peaks and impacting on processing and quantification. We present a comparison using in vivo data of different methods for correcting these errors.MethodsThree different correction methods were applied to 53 brain scans: residual water peak alignment, creatine fitting, and spectral registration. In 32 of 53 subjects, diffusion tensor imaging (DTI) was acquired prior to the MRS scan. We compared the resulting linewidths to find the most effective technique. In addition, the impact on metabolite concentration estimates was evaluated.ResultsMRS data acquired after DTI imaging exhibited a frequency drift four times higher than data without DTI, resulting in changes to metabolite concentrations, particularly glutamate/glutamine. All three correction methods produced significantly improved linewidths relative to uncorrected data, with spectral registration performing best by a small margin.ConclusionFrequency correction is an important step in processing MRS data, significantly impacting metabolite quantification, particularly after echo-planar imaging that often occurs with MRS scans in clinical studies. Spectral registration proved most effective at frequency correction.Copyright © 2016 by the American Society of Neuroimaging.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…