-
- Eric Peter Thelin, Emma Jeppsson, Arvid Frostell, Mikael Svensson, Stefania Mondello, Bo-Michael Bellander, and David W Nelson.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. eric.thelin@ki.se.
- Crit Care. 2016 Sep 8; 20: 285285.
BackgroundIn order to improve assessment and outcome prediction in patients suffering from traumatic brain injury (TBI), cerebral protein levels in serum have been suggested as biomarkers of injury. However, despite much investigation, biomarkers have yet to reach broad clinical utility in TBI. This study is a 9-year follow-up and clinical experience of the two most studied proteins, neuron-specific enolase (NSE) and S100B, in a neuro-intensive care TBI population. Our aims were to investigate to what extent NSE and S100B, independently and in combination, could predict outcome, assess injury severity, and to investigate if the biomarker levels were influenced by extracranial factors.MethodsAll patients treated at the neuro-intensive care unit at Karolinska University Hospital, Stockholm, Sweden between 2005 and 2013 with at least three measurements of serum S100B and NSE (sampled twice daily) were retrospectively included. In total, 417 patients fulfilled the criteria. Parameters were extracted from the computerized hospital charts. Glasgow Outcome Score (GOS) was used to assess long-term functional outcome. Univariate, and multivariate, regression models toward outcome and what explained the high levels of the biomarkers were performed. Nagelkerke's pseudo-R(2) was used to illustrate the explained variance of the different models. A sliding window assessed biomarker correlation to outcome and multitrauma over time.ResultsS100B was found a better predictor of outcome as compared to NSE (area under the curve (AUC) samples, the first 48 hours had Nagelkerke's pseudo-R(2) values of 0.132 and 0.038, respectively), where the information content of S100B peaks at approximately 1 day after trauma. In contrast, although both biomarkers were independently correlated to outcome, NSE had limited additional predictive capabilities in the presence of S100B in multivariate models, due to covariance between the two biomarkers (correlation coefficient 0.673 for AUC 48 hours). Moreover, NSE was to a greater extent correlated to multitrauma the first 48 hours following injury, whereas the effect of extracerebral trauma on S100B levels appears limited to the first 12 hours.ConclusionsWhile both biomarkers are independently correlated to long-term functional outcome, S100B is found a more accurate outcome predictor and possibly a more clinically useful biomarker than NSE for TBI patients.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.