• Journal of neurosurgery · Jun 2017

    Case Reports

    Modification of electrophysiological activity pattern after anterior thalamic deep brain stimulation for intractable epilepsy: report of 3 cases.

    • Hae Yu Kim, Yun Jung Hur, Heung-Dong Kim, Kang Min Park, Sung Eun Kim, and Tae Gyu Hwang.
    • Departments of 1 Neurosurgery.
    • J. Neurosurg. 2017 Jun 1; 126 (6): 2028-2035.

    AbstractOBJECTIVE Thalamic stimulation can provoke electroencephalography (EEG) synchronization or desynchronization, which can help to reduce the occurrence of seizures in intractable epilepsy, though the underlying mechanism is not fully understood. Therefore, the authors investigated changes in EEG electrical activity to better understand the seizure-reducing effects of deep brain stimulation (DBS) in patients with intractable epilepsy. METHODS Electrical activation patterns in the epileptogenic brains of 3 patients were analyzed using classical low-resolution electromagnetic tomography analysis recursively applied (CLARA). Electrical activity recorded during thalamic stimulation was compared with that recorded during the preoperative and postoperative off-stimulation states in patients who underwent anterior thalamic nucleus DBS for intractable epilepsy. RESULTS Interictal EEG was fully synchronized to the β frequency in the postoperative on-stimulation period. The CLARA showed that electrical activity during preoperative and postoperative off-stimulation states was localized in cortical and subcortical areas, including the insular, middle frontal, mesial temporal, and precentral areas. No electrical activity was localized in deep nucleus structures. However, with CLARA, electrical activity in the postoperative on-stimulation period was localized in the anterior cingulate area, basal ganglia, and midbrain. CONCLUSIONS Anterior thalamic stimulation could spread electrical current to the underlying neuronal networks that connect with the thalamus, which functions as a cortical pacemaker. Consequently, the thalamus could modify electrical activity within these neuronal networks and influence cortical EEG activity by inducing neuronal synchronization between the thalamus and cortical structures.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.