-
- Gavin C Cawley, Gareth J Janacek, Malcolm R Haylock, and Stephen R Dorling.
- School of Computing Sciences, University of East Anglia, Norwich, UK. gcc@cmp.uea.ac.uk
- Neural Netw. 2007 May 1; 20 (4): 537-49.
AbstractArtificial neural networks have proved an attractive approach to non-linear regression problems arising in environmental modelling, such as statistical downscaling, short-term forecasting of atmospheric pollutant concentrations and rainfall run-off modelling. However, environmental datasets are frequently very noisy and characterized by a noise process that may be heteroscedastic (having input dependent variance) and/or non-Gaussian. The aim of this paper is to review existing methodologies for estimating predictive uncertainty in such situations and, more importantly, to illustrate how a model of the predictive distribution may be exploited in assessing the possible impacts of climate change and to improve current decision making processes. The results of the WCCI-2006 predictive uncertainty in environmental modelling challenge are also reviewed, suggesting a number of areas where further research may provide significant benefits.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.