• J. Neurosci. Methods · Sep 2008

    Localization of neurosurgically implanted electrodes via photograph-MRI-radiograph coregistration.

    • Sarang S Dalal, Erik Edwards, Heidi E Kirsch, Nicholas M Barbaro, Robert T Knight, and Srikantan S Nagarajan.
    • Biomagnetic Imaging Laboratory, Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA 94143-0628, USA.
    • J. Neurosci. Methods. 2008 Sep 15; 174 (1): 106-15.

    AbstractIntracranial electroencephalography (iEEG) is clinically indicated for medically refractory epilepsy and is a promising approach for developing neural prosthetics. These recordings also provide valuable data for cognitive neuroscience research. Accurate localization of iEEG electrodes is essential for evaluating specific brain regions underlying the electrodes that indicate normal or pathological activity, as well as for relating research findings to neuroimaging and lesion studies. However, electrodes are frequently tucked underneath the edge of a craniotomy, inserted via a burr hole, or placed deep within the brain, where their locations cannot be verified visually or with neuronavigational systems. We show that one existing method, registration of postimplant computed tomography (CT) with preoperative magnetic resonance imaging (MRI), can result in errors exceeding 1cm. We present a novel method for localizing iEEG electrodes using routinely acquired surgical photographs, X-ray radiographs, and magnetic resonance imaging scans. Known control points are used to compute projective transforms that link the different image sets, ultimately allowing hidden electrodes to be localized, in addition to refining the location of manually registered visible electrodes. As the technique does not require any calibration between the different image modalities, it can be applied to existing image databases. The final result is a set of electrode positions on the patient's rendered MRI yielding locations relative to sulcal and gyral landmarks on individual anatomy, as well as MNI coordinates. We demonstrate the results of our method in eight epilepsy patients implanted with electrode grids spanning the left hemisphere.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.