• Plos One · Jan 2012

    Randomized Controlled Trial

    Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action.

    • Milan Scheidegger, Martin Walter, Mick Lehmann, Coraline Metzger, Simone Grimm, Heinz Boeker, Peter Boesiger, Anke Henning, and Erich Seifritz.
    • Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland. scheidegger@biomed.ee.ethz.ch
    • Plos One. 2012 Jan 1; 7 (9): e44799.

    AbstractIncreasing preclinical and clinical evidence underscores the strong and rapid antidepressant properties of the glutamate-modulating NMDA receptor antagonist ketamine. Targeting the glutamatergic system might thus provide a novel molecular strategy for antidepressant treatment. Since glutamate is the most abundant and major excitatory neurotransmitter in the brain, pathophysiological changes in glutamatergic signaling are likely to affect neurobehavioral plasticity, information processing and large-scale changes in functional brain connectivity underlying certain symptoms of major depressive disorder. Using resting state functional magnetic resonance imaging (rsfMRI), the "dorsal nexus "(DN) was recently identified as a bilateral dorsal medial prefrontal cortex region showing dramatically increased depression-associated functional connectivity with large portions of a cognitive control network (CCN), the default mode network (DMN), and a rostral affective network (AN). Hence, Sheline and colleagues (2010) proposed that reducing increased connectivity of the DN might play a critical role in reducing depression symptomatology and thus represent a potential therapy target for affective disorders. Here, using a randomized, placebo-controlled, double-blind, crossover rsfMRI challenge in healthy subjects we demonstrate that ketamine decreases functional connectivity of the DMN to the DN and to the pregenual anterior cingulate (PACC) and medioprefrontal cortex (MPFC) via its representative hub, the posterior cingulate cortex (PCC). These findings in healthy subjects may serve as a model to elucidate potential biomechanisms that are addressed by successful treatment of major depression. This notion is further supported by the temporal overlap of our observation of subacute functional network modulation after 24 hours with the peak of efficacy following an intravenous ketamine administration in treatment-resistant depression.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.