• Respirology · Apr 2014

    Review

    Introduction to causal diagrams for confounder selection.

    • Elizabeth J Williamson, Zoe Aitken, Jock Lawrie, Shyamali C Dharmage, John A Burgess, and Andrew B Forbes.
    • School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; The Victorian Centre for Biostatistics (VICBiostat), Melbourne, Victoria, Australia.
    • Respirology. 2014 Apr 1; 19 (3): 303-11.

    AbstractIn respiratory health research, interest often lies in estimating the effect of an exposure on a health outcome. If randomization of the exposure of interest is not possible, estimating its effect is typically complicated by confounding bias. This can often be dealt with by controlling for the variables causing the confounding, if measured, in the statistical analysis. Common statistical methods used to achieve this include multivariable regression models adjusting for selected confounding variables or stratification on those variables. Therefore, a key question is which measured variables need to be controlled for in order to remove confounding. An approach to confounder-selection based on the use of causal diagrams (often called directed acyclic graphs) is discussed. A causal diagram is a visual representation of the causal relationships believed to exist between the variables of interest, including the exposure, outcome and potential confounding variables. After creating a causal diagram for the research question, an intuitive and easy-to-use set of rules can be applied, based on a foundation of rigorous mathematics, to decide which measured variables must be controlled for in the statistical analysis in order to remove confounding, to the extent that is possible using the available data. This approach is illustrated by constructing a causal diagram for the research question: 'Does personal smoking affect the risk of subsequent asthma?'. Using data taken from the Tasmanian Longitudinal Health Study, the statistical analysis suggested by the causal diagram approach was performed.© 2014 The Authors. Respirology © 2014 Asian Pacific Society of Respirology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.