• J. Thromb. Thrombolysis · Apr 2016

    Impact of microparticles derived from erythrocytes on fibrinolysis.

    • Grigory Levin, Ekaterina Sukhareva, and Athina Lavrentieva.
    • Federal State Budgetary Institution "Privolzhsky Federal Research Medical Centre" of the Ministry of Health of the Russian Federation, 18, Verhne-Volzhskaya Naberezhnaya, Nizhny Novgorod, Russia, 603155. levin@unn.ac.ru.
    • J. Thromb. Thrombolysis. 2016 Apr 1; 41 (3): 452-8.

    AbstractIt has long been known that negatively charged membranes of erythrocyte-derived microparticles display procoagulant activity. However, relatively little is known about the possible fibrinolytic activity of such microparticles. This issue becomes particularly important during red blood cell storage, which significantly increases the number of microparticles. Whole blood was collected from 30 healthy donors. Microparticles were isolated on days 7, 14, 21, and 28 of erythrocyte storage. The effect of microparticles on the fibrinolytic activity of the donor plasma was determined by coagulation and optical (chromogenic substrate) methods. We demonstrated that erythrocyte microparticles had a prominent fibrinolytic activity which cleaves not only fibrin but also chromogenic substrates. Microparticles present fibrinolytic activity mainly due to the presence of plasminogen on them. Microparticles derived from erythrocytes significantly enhance cleavage of the chromogenic substrate by the streptokinase-plasminogen complex, but to a lesser extent accelerate euglobulin clot lysis time. Erythrocyte-derived microparticles display prominent fibrinolytic activity, which significantly decreases during storage of red blood cells.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.