• Interact Cardiovasc Thorac Surg · Jun 2015

    A new tissue-engineered biodegradable surgical patch for high-pressure systems †.

    • Yuki Ichihara, Toshiharu Shinoka, Goki Matsumura, Yoshito Ikada, and Kenji Yamazaki.
    • Department of Cardiovascular Surgery, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan.
    • Interact Cardiovasc Thorac Surg. 2015 Jun 1; 20 (6): 768-76.

    ObjectivesIdeal alternatives for replacing native arteries, which have biocompatibility such as growth potential, anti-thrombogenesis and durability, have yet to be discovered. We previously demonstrated the utility of tissue-engineered vascular autografts; however, the use of these autografts is limited to low-pressure conditions. The aim of this study was to create the tissue-engineered arterial patch (TEAP) that could be used in high-pressure systems, and to evaluate the maturation in this regenerative tissue.MethodsWe developed a new biodegradable polymer scaffold, which is composed of a co-polymer of epsilon-caprolactone and lactide acid [P(CL/LA)] and a poly-L-lactide acid (PLLA). To obtain mechanical strength, we modified PLLA that is degraded by hydrolysis for 1-2 years in contrast to polyglycolic acid in our low-pressure study previously. We implanted an oval-shaped patch (30 × 15 mm) of this polymer without cell seeding into the descending aorta of 12 dogs, and followed the animals for 1, 3 and 6 months (n = 4 in each group). The cell proliferation in the patch was evaluated with histological and immunohistochemical methods. Additionally, the expression of vascular endothelial growth factor (VEGF) and smooth muscle myosin heavy chain (smMHC) mRNA in the patches was determined with reverse transcriptase-polymerase chain reaction.ResultsMacroscopically, there was no incidence of rupture or aneurysmal formation on the patch. The luminal surface of the TEAP was covered with a single layer of endothelial cells stained with vWF immunohistochemically at 1 month after implantation. αSMA-positive cells that indicated smooth muscle cells and collagen fibres were observed in the patch and they increased over time. The VEGF mRNA expression in the patch at 1 month was significantly higher than that of native arterial tissue (1 month; 0.124 ± 0.017 ng/µl, native; 0.009 ± 0.003 ng/µl, P < 0.05). The smMHC mRNA expression gradually increased, and reached ∼ 60% of that of the native artery at 6 months (6 months: 0.351 ± 0.028 ng/µl, native: 0.540 ± 0.027 ng/µl).ConclusionsWe demonstrated the maturation of endothelial and smooth muscle cells in TEAP, suggesting that this biodegradable polymer scaffold could be used as an alternative vascular material even in high-pressure systems.© The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.