• Plos One · Jan 2016

    Inducing Acute Traumatic Coagulopathy In Vitro: The Effects of Activated Protein C on Healthy Human Whole Blood.

    • Benjamin M Howard, Lucy Z Kornblith, Christopher K Cheung, Matthew E Kutcher, Byron Y Miyazawa, Ryan F Vilardi, and Mitchell J Cohen.
    • Department of Surgery, University of California San Francisco and San Francisco General Hospital, San Francisco, California, United States of America.
    • Plos One. 2016 Jan 1; 11 (3): e0150930.

    IntroductionAcute traumatic coagulopathy has been associated with shock and tissue injury, and may be mediated via activation of the protein C pathway. Patients with acute traumatic coagulopathy have prolonged PT and PTT, and decreased activity of factors V and VIII; they are also hypocoagulable by thromboelastometry (ROTEM) and other viscoelastic assays. To test the etiology of this phenomenon, we hypothesized that such coagulopathy could be induced in vitro in healthy human blood with the addition of activated protein C (aPC).MethodsWhole blood was collected from 20 healthy human subjects, and was "spiked" with increasing concentrations of purified human aPC (control, 75, 300, 2000 ng/mL). PT/PTT, factor activity assays, and ROTEM were performed on each sample. Mixed effect regression modeling was performed to assess the association of aPC concentration with PT/PTT, factor activity, and ROTEM parameters.ResultsIn all subjects, increasing concentrations of aPC produced ROTEM tracings consistent with traumatic coagulopathy. ROTEM EXTEM parameters differed significantly by aPC concentration, with stepwise prolongation of clotting time (CT) and clot formation time (CFT), decreased alpha angle (α), impaired early clot formation (a10 and a20), and reduced maximum clot firmness (MCF). PT and PTT were significantly prolonged at higher aPC concentrations, with corresponding significant decreases in factor V and VIII activity.ConclusionA phenotype of acute traumatic coagulopathy can be induced in healthy blood by the in vitro addition of aPC alone, as evidenced by viscoelastic measures and confirmed by conventional coagulation assays and factor activity. This may lend further mechanistic insight to the etiology of coagulation abnormalities in trauma, supporting the central role of the protein C pathway. Our findings also represent a model for future investigations in the diagnosis and treatment of acute traumatic coagulopathy.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.