• Conf Proc IEEE Eng Med Biol Soc · Jan 2012

    Frequency dependent transmission characteristics between arterial blood pressure and intracranial pressure in rats.

    • Mi Ok Kim, Jonathan Li, Ahmad Qasem, Stuart L Graham, and Alberto P Avolio.
    • Australian School of Advanced Medicine, Macquarie University, Sydney, Australia. mi-ok.kim@students.mq.edu.au
    • Conf Proc IEEE Eng Med Biol Soc. 2012 Jan 1; 2012: 5614-7.

    AbstractThe pulsatile energy transmission between arterial blood pressure (BP) and intracranial pressure (ICP) is affected by cerebrospinal fluid (CSF) and brain tissue. Studies in dogs have shown that the transfer function (TF) between BP and ICP shows damping of pulsatile energy around heart rate frequency (1-3Hz) with notch filter characteristics, and the amount of damping is sensitive to cerebral compliance. This investigation aimed to assess whether this notch filter characteristic is an intrinsic property of the brain enclosed in a rigid skull and therefore applies across species with a large difference in body size. This was done by determining the TF between BP and ICP in rats with corresponding significantly smaller body size and higher heart rate (5-7 Hz) compared to dogs. Arterial BP and ICP waveforms were recorded in 8 anaesthetized (urethane) adult male Sprague-Dawley rats with solid state micro-sensor transducer catheters. The TF was computed as the ratio of ICP and arterial BP waveform amplitudes for the first 4 harmonics. Arterial BP and ICP signals were normalized for pulse amplitude such that attenuation or amplification is detected for any TF values significantly different to unity. Mean cardiac frequency was 5.72 Hz (range 4.6 - 7.11 Hz). Of the 4 harmonics only the heart rate frequency band showed a statistically significant attenuation of 17%, while the higher harmonics showed a progressive amplification. Findings show that the rat brain acts as a selective frequency pulsation absorber of energy centered at heart rate frequency. This similarity with larger animals indicates a possible allometric mechanism underlying this phenomenon, with notch filter characteristic frequency scaled to body size. This study suggests that the TF between arterial BP and ICP is an intrinsic property of the brain tissue and CSF enclosed in a rigid compartment and can be used to assess changes in cerebral compliance due to abnormal CSF pressure and flow as occur in hydrocephalus.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.