-
- Laura Dwyer-Lindgren, Amelia Bertozzi-Villa, Rebecca W Stubbs, Chloe Morozoff, Michael J Kutz, Chantal Huynh, Ryan M Barber, Katya A Shackelford, Johan P Mackenbach, Frank J van Lenthe, Abraham D Flaxman, Mohsen Naghavi, Ali H Mokdad, and Christopher J L Murray.
- Institute for Health Metrics and Evaluation, University of Washington, Seattle.
- JAMA. 2016 Dec 13; 316 (22): 2385-2401.
ImportanceCounty-level patterns in mortality rates by cause have not been systematically described but are potentially useful for public health officials, clinicians, and researchers seeking to improve health and reduce geographic disparities.ObjectivesTo demonstrate the use of a novel method for county-level estimation and to estimate annual mortality rates by US county for 21 mutually exclusive causes of death from 1980 through 2014.Design, Setting, And ParticipantsRedistribution methods for garbage codes (implausible or insufficiently specific cause of death codes) and small area estimation methods (statistical methods for estimating rates in small subpopulations) were applied to death registration data from the National Vital Statistics System to estimate annual county-level mortality rates for 21 causes of death. These estimates were raked (scaled along multiple dimensions) to ensure consistency between causes and with existing national-level estimates. Geographic patterns in the age-standardized mortality rates in 2014 and in the change in the age-standardized mortality rates between 1980 and 2014 for the 10 highest-burden causes were determined.ExposureCounty of residence.Main Outcomes And MeasuresCause-specific age-standardized mortality rates.ResultsA total of 80 412 524 deaths were recorded from January 1, 1980, through December 31, 2014, in the United States. Of these, 19.4 million deaths were assigned garbage codes. Mortality rates were analyzed for 3110 counties or groups of counties. Large between-county disparities were evident for every cause, with the gap in age-standardized mortality rates between counties in the 90th and 10th percentiles varying from 14.0 deaths per 100 000 population (cirrhosis and chronic liver diseases) to 147.0 deaths per 100 000 population (cardiovascular diseases). Geographic regions with elevated mortality rates differed among causes: for example, cardiovascular disease mortality tended to be highest along the southern half of the Mississippi River, while mortality rates from self-harm and interpersonal violence were elevated in southwestern counties, and mortality rates from chronic respiratory disease were highest in counties in eastern Kentucky and western West Virginia. Counties also varied widely in terms of the change in cause-specific mortality rates between 1980 and 2014. For most causes (eg, neoplasms, neurological disorders, and self-harm and interpersonal violence), both increases and decreases in county-level mortality rates were observed.Conclusions And RelevanceIn this analysis of US cause-specific county-level mortality rates from 1980 through 2014, there were large between-county differences for every cause of death, although geographic patterns varied substantially by cause of death. The approach to county-level analyses with small area models used in this study has the potential to provide novel insights into US disease-specific mortality time trends and their differences across geographic regions.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.