• Brain Struct Funct · May 2014

    Reduced cholinergic and glutamatergic synaptic input to regenerated motoneurons after facial nerve repair in rats: potential implications for recovery of motor function.

    • Abdulrahman Raslan, Philipp Ernst, Marlen Werle, Heike Thieme, Katja Szameit, Mira Finkensieper, Orlando Guntinas-Lichius, and Andrey Irintchev.
    • Department of Otorhinolaryngology, University Hospital Jena, Lessingstrasse 2, 07740, Jena, Germany.
    • Brain Struct Funct. 2014 May 1; 219 (3): 891-909.

    AbstractDeafferentation of motoneurons after facial nerve injury is a well-documented phenomenon but whether synaptic inputs to facial motoneurons are completely restored after reinnervation is unknown. Here, we tested the hypothesis that deficits in motor performance after transection/suture of the facial nerve (facial-facial anastomosis, FFA) in adult rats are associated with incomplete recovery of synaptic inputs. At 2 months after FFA, we found, in congruence with previous results, that the amplitude of whisking had recovered to only 31 % of control (sham operation). In the same FFA-treated rats, estimates of number of chemically defined synaptic terminals in the facial nucleus by immunohistochemistry and stereology showed a significant loss, compared with sham controls, of glutamatergic terminals (-26 %) and cholinergic perisomatic boutons (-31 %), but not inhibitory (GABA/glycinergic) terminals (-14 %). Synaptic deficits were accompanied by persistent microgliosis in the facial nucleus but soma area, dendritic arbor volume, and total number of motoneurons were normal. Correlation analyses revealed significant co-variations of whisking amplitude with number of glutamatergic and cholinergic synapses. Compared with 2 months, analyses of animals at 4 months after FFA showed no attenuation of the functional deficit and structural aberrations with one exception, increase of inhibitory terminal numbers beyond control level (+11 %) leading to further reduction of the excitatory/inhibitory terminal ratio. We suggest that deficits in motoneuron innervation in the regenerated facial nucleus-reduced glutamatergic and cholinergic input and reduced excitatory/inhibitory terminal ratio-could attenuate the motor output and, thus, negatively impact the functional performance after facial nerve regeneration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.