• Prehosp Emerg Care · Mar 2017

    Anomaly Detection Outperforms Logistic Regression in Predicting Outcomes in Trauma Patients.

    • Zachary D W Dezman, Chen Gao, Shiming Yang, Peter Hu, Li Yao, Hsiao-Chi Li, Chein-I Chang, and Colin Mackenzie.
    • Prehosp Emerg Care. 2017 Mar 1; 21 (2): 174-179.

    ObjectiveRecent advancements in trauma resuscitation have shown a great benefit of early identification and control of hemorrhage, which is the most common cause of death in injured patients. We introduce a new analytical approach, anomaly detection (AD), as an alternative method to the traditional logistic regression (LR) method in predicting which injured patients receive transfusions, intensive care, and other interventions.MethodsWe abstracted routinely collected prehospital vital sign data from patient records (adult patients who survived more than 15 minutes after being directly admitted to a level 1 trauma center). The vital signs of the study cohort were analyzed using both LR and AD methods. Predictions on blood transfusions generated by these approaches were compared with hospital records using the respective areas under the receiver operating characteristic curves (AUROC).ResultsOf the patients seen at our trauma center between January 1, 2009, and December 31, 2010, 5,464 were included. AD significantly outperformed LR, identifying which patients would receive transfusions of uncrossmatched blood, transfusion of blood between the time of admission and 6 hours later, the need for intensive care, and in-hospital mortality (mean AUROC = 0.764 and 0.720, respectively). AD and LR provided similar predictions for the patients who would receive massive transfusion. Under the stratified 10 fold times 10 cross-validation test, AD also had significantly lower AUROC variance across subgroups than LR, suggesting AD is a more stable predictions model.ConclusionsAD provides enhanced predictions for clinically relevant outcomes in the trauma patient cohort studied and may assist providers in caring for acutely injured patients in the prehospital arena.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.