• Anesthesiology · Mar 2017

    Cardiac Calcium Release Channel (Ryanodine Receptor 2) Regulation by Halogenated Anesthetics.

    • Derek R Laver, John Attia, Christopher Oldmeadow, and Anthony W Quail.
    • From the School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia (D.R.L., A.W.Q.) and the School of Medicine and Public Health, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia (J.A., C.O., A.W.Q.).
    • Anesthesiology. 2017 Mar 1; 126 (3): 495-506.

    BackgroundHalogenated anesthetics activate cardiac ryanodine receptor 2-mediated sarcoplasmic reticulum Ca release, leading to sarcoplasmic reticulum Ca depletion, reduced cardiac function, and providing cell protection against ischemia-reperfusion injury. Anesthetic activation of ryanodine receptor 2 is poorly defined, leaving aspects of the protective mechanism uncertain.MethodsRyanodine receptor 2 from the sheep heart was incorporated into artificial lipid bilayers, and their gating properties were measured in response to five halogenated anesthetics.ResultsEach anesthetic rapidly and reversibly activated ryanodine receptor 2, but only from the cytoplasmic side. Relative activation levels were as follows: halothane (approximately 4-fold; n = 8), desflurane and enflurane (approximately 3-fold,n = 9), and isoflurane and sevoflurane (approximately 1.5-fold, n = 7, 10). Half-activating concentrations (Ka) were in the range 1.3 to 2.1 mM (1.4 to 2.6 minimum alveolar concentration [MAC]) with the exception of isoflurane (5.3 mM, 6.6 minimum alveolar concentration). Dantrolene (10 μM with 100 nM calmodulin) inhibited ryanodine receptor 2 by 40% but did not alter the Ka for halothane activation. Halothane potentiated luminal and cytoplasmic Ca activation of ryanodine receptor 2 but had no effect on Mg inhibition. Halothane activated ryanodine receptor 2 in the absence and presence (2 mM) of adenosine triphosphate (ATP). Adenosine, a competitive antagonist to ATP activation of ryanodine receptor 2, did not antagonize halothane activation in the absence of ATP.ConclusionsAt clinical concentrations (1 MAC), halothane desflurane and enflurane activated ryanodine receptor 2, whereas isoflurane and sevoflurane were ineffective. Dantrolene inhibition of ryanodine receptor 2 substantially negated the activating effects of anesthetics. Halothane acted independently of the adenine nucleotide-binding site on ryanodine receptor 2. The previously observed adenosine antagonism of halothane activation of sarcoplasmic reticulum Ca release was due to competition between adenosine and ATP, rather than between halothane and ATP.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…