• Arch Phys Med Rehabil · May 2012

    Randomized Controlled Trial

    Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study.

    • Ming Wu, Jill M Landry, Brian D Schmit, T George Hornby, and Sheng-Che Yen.
    • Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA. w-ming@northwestern.edu
    • Arch Phys Med Rehabil. 2012 May 1; 93 (5): 782-9.

    ObjectiveTo determine whether cable-driven robotic resistance treadmill training can improve locomotor function in humans with incomplete spinal cord injury (SCI).DesignRepeated assessment of the same patients with crossover design.SettingResearch units of rehabilitation hospitals in Chicago.ParticipantsPatients with chronic incomplete SCI (N=10) were recruited to participate in this study.InterventionsSubjects were randomly assigned to 1 of 2 groups. One group received 4 weeks of assistance training followed by 4 weeks of resistance training, while the other group received 4 weeks of resistance training followed by 4 weeks of assistance training. Locomotor training was provided by using a cable-driven robotic locomotor training system, which is highly backdrivable and compliant, allowing patients the freedom to voluntarily move their legs in a natural gait pattern during body weight supported treadmill training (BWSTT), while providing controlled assistance/resistance forces to the leg during the swing phase of gait.Main Outcome MeasuresPrimary outcome measures were evaluated for each participant before training and after 4 and 8 weeks of training. Primary measures were self-selected and fast overground walking velocity and 6-minute walking distance. Secondary measures included clinical assessments of balance, muscle tone, and strength.ResultsA significant improvement in walking speed and balance in humans with SCI was observed after robotic treadmill training using the cable-driven robotic locomotor trainer. There was no significant difference in walking functional gains after resistance versus assistance training, although resistance training was more effective for higher functioning patients.ConclusionsCable-driven robotic resistance training may be used as an adjunct to BWSTT for improving overground walking function in humans with incomplete SCI, particularly for those patients with relatively high function.Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.