• J Clin Neurosci · Nov 2012

    A longitudinal study of sensory biomarkers of progression in patients with diabetic peripheral neuropathy using skin biopsies.

    • H Narayanaswamy, P Facer, V P Misra, M Timmers, G Byttebier, T Meert, and P Anand.
    • Peripheral Neuropathy Unit, Imperial College London, Area A, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
    • J Clin Neurosci. 2012 Nov 1; 19 (11): 1490-6.

    AbstractWe aimed to identify biomarkers in skin punch biopsies that could be used to monitor progression of diabetic peripheral neuropathy (DPN), and, in future studies, to assess the efficacy of agents that may reduce progression. Patients with DPN were studied with clinical assessments, skin biopsies, quantitative sensory testing (QST), histamine-induced skin flare, nerve conduction studies and contact heat-evoked potentials (CHEPS). Skin biopsies were performed on two visits with a 6 month interval (n=29 patients) to quantify intraepidermal (IENF) and subepidermal (SENF) nerve fibres immunoreactive for: protein gene product 9.5 (PGP9.5), a pan-neuronal marker; transient receptor potential cation channel vanilloid 1 (TRPV1), the heat and capsaicin receptor; and growth associated protein-43 (GAP-43), a marker of regenerating fibres. The IENF were counted along the length of four non-consecutive sections, and results were expressed as fibres per millimetre length of section. SENF were measured by image analysis, and the area of highlighted immunoreactivity was obtained as a percentage (% area) of the field scanned. QST, skin flare and CHEPS were also performed at the two visits. We found that IENF and SENF were significantly reduced for both PGP9.5 and TRPV1 between the first and second skin biopsy over 6months. The annual rate ± standard error of the mean of IENF loss was 3.76 ± 1.46 fibres/mm for PGP9.5, and 3.13 ± 0.58 fibres/mm for TRPV1. The other tests did not show significant changes. Strongly positive GAP-43 nerve fibres were found in deep dermis in the patients with diabetes, even in those with an absence of IENF. We conclude that PGP9.5 and TRPV1 IENF and SENF in skin biopsies are useful markers of progression in DPN, whereas GAP-43 SENF could potentially help detect nerve regeneration in severe neuropathy.Copyright © 2012 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.