• Anesthesia and analgesia · Apr 2017

    Multicenter Study Comparative Study Observational Study

    Multicenter Study Validating Accuracy of a Continuous Respiratory Rate Measurement Derived From Pulse Oximetry: A Comparison With Capnography.

    • Sergio D Bergese, Michael L Mestek, Scott D Kelley, Robert McIntyre, Alberto A Uribe, Rakesh Sethi, James N Watson, and Paul S Addison.
    • From the Departments of *Anesthesiology and †Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; ‡Respiratory & Monitoring Solutions, Medtronic, Boulder, Colorado; §Department of Surgery, University of Colorado Hospital, Aurora, Colorado; and ‖Respiratory & Monitoring Solutions, Medtronic, Edinburgh, United Kingdom.
    • Anesth. Analg. 2017 Apr 1; 124 (4): 1153-1159.

    BackgroundIntermittent measurement of respiratory rate via observation is routine in many patient care settings. This approach has several inherent limitations that diminish the clinical utility of these measurements because it is intermittent, susceptible to human error, and requires clinical resources. As an alternative, a software application that derives continuous respiratory rate measurement from a standard pulse oximeter has been developed. We sought to determine the performance characteristics of this new technology by comparison with clinician-reviewed capnography waveforms in both healthy subjects and hospitalized patients in a low-acuity care setting.MethodsTwo independent observational studies were conducted to validate the performance of the Medtronic Nellcor Respiration Rate Software application. One study enrolled 26 healthy volunteer subjects in a clinical laboratory, and a second multicenter study enrolled 53 hospitalized patients. During a 30-minute study period taking place while participants were breathing spontaneously, pulse oximeter and nasal/oral capnography waveforms were collected. Pulse oximeter waveforms were processed to determine respiratory rate via the Medtronic Nellcor Respiration Rate Software. Capnography waveforms reviewed by a clinician were used to determine the reference respiratory rate.ResultsA total of 23,243 paired observations between the pulse oximeter-derived respiratory rate and the capnography reference method were collected and examined. The mean reference-based respiratory rate was 15.3 ± 4.3 breaths per minute with a range of 4 to 34 breaths per minute. The Pearson correlation coefficient between the Medtronic Nellcor Respiration Rate Software values and the capnography reference respiratory rate is reported as a linear correlation, R, as 0.92 ± 0.02 (P < .001), whereas Lin's concordance correlation coefficient indicates an overall agreement of 0.85 ± 0.04 (95% confidence interval [CI] +0.76; +0.93) (healthy volunteers: 0.94 ± 0.02 [95% CI +0.91; +0.97]; hospitalized patients: 0.80 ± 0.06 [95% CI +0.68; +0.92]). The mean bias of the Medtronic Nellcor Respiration Rate Software was 0.18 breaths per minute with a precision (SD) of 1.65 breaths per minute (healthy volunteers: 0.37 ± 0.78 [95% limits of agreement: -1.16; +1.90] breaths per minute; hospitalized patients: 0.07 ± 1.99 [95% limits of agreement: -3.84; +3.97] breaths per minute). The root mean square deviation was 1.35 breaths per minute (healthy volunteers: 0.81; hospitalized patients: 1.60).ConclusionsThese data demonstrate the performance of the Medtronic Nellcor Respiration Rate Software in healthy subjects and patients hospitalized in a low-acuity care setting when compared with clinician-reviewed capnography. The observed performance of this technology suggests that it may be a useful adjunct to continuous pulse oximetry monitoring by providing continuous respiratory rate measurements. The potential patient safety benefit of using combined continuous pulse oximetry and respiratory rate monitoring warrants assessment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…