-
J. Thorac. Cardiovasc. Surg. · Apr 2017
Assessment of central venous physiology of Fontan circulation using peripheral venous pressure.
- Satoshi Masutani, Clara Kurishima, Akiko Yana, Seiko Kuwata, Yoichi Iwamoto, Hirofumi Saiki, Hirotaka Ishido, and Hideaki Senzaki.
- Department of Pediatric Cardiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan.
- J. Thorac. Cardiovasc. Surg. 2017 Apr 1; 153 (4): 912-920.
ObjectiveElevated central venous pressure is a major cause of morbidity and mortality after the Fontan operation. The difference between mean circulatory filling pressure and central venous pressure, a driving force of venous return, is important in determining dynamic changes in central venous pressure in response to changes in ventricular properties or loading conditions. Thus, noninvasive central venous pressure and mean circulatory filling pressure estimation may contribute to optimal management in patients undergoing the Fontan operation. We tested the hypothesis that central venous pressure and mean circulatory filling pressure in those undergoing the Fontan operation can be simply estimated using peripheral venous pressure and arm equilibrium pressure, respectively.MethodsThis study included 30 patients after the Fontan operation who underwent cardiac catheterization (median 8.6, 3.4-42 years). Peripheral venous pressure was measured at the peripheral vein in the upper extremities. Mean circulatory filling pressure was calculated by the changes of arterial pressure and central venous pressure during the Valsalva maneuver. Arm equilibrium pressure was measured as equilibrated venous pressure by rapidly inflating a blood pressure cuff to 200 mm Hg.ResultsCentral venous pressure and peripheral venous pressure were highly correlated (central venous pressure = 1.6 + 0.68 × peripheral venous pressure, R = 0.86, P < .0001). Stepwise multivariable regression analysis showed that only peripheral venous pressure was a significant determinant of central venous pressure. Central venous pressure was accurately estimated using regression after volume loading by contrast injection (R = 0.82, P < .0001). In addition, arm equilibrium pressure measurements were highly reproducible and robustly reflected invasively measured mean circulatory filling pressure (mean circulatory filling pressure = 9.1 + 0.63 × arm equilibrium pressure, R = 0.88, P < .0001).ConclusionsCentral venous pressure and mean circulatory filling pressure can be noninvasively estimated by peripheral venous pressure and arm equilibrium pressure, respectively. This should help clarify unidentified Fontan pathophysiology and the mechanisms of Fontan failure progression, thereby helping construct effective tailor-made approaches to prevent Fontan failure.Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.