• J. Neurosci. · Dec 2007

    Comparative Study

    Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons.

    • Yoshio Takashima, Richard L Daniels, Wendy Knowlton, James Teng, Emily R Liman, and David D McKemy.
    • Neuroscience Graduate Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.
    • J. Neurosci. 2007 Dec 19; 27 (51): 14147-57.

    AbstractSensory nerves detect an extensive array of somatosensory stimuli, including environmental temperatures. Despite activating only a small cohort of sensory neurons, cold temperatures generate a variety of distinct sensations that range from pleasantly cool to painfully aching, prickling, and burning. Psychophysical and functional data show that cold responses are mediated by both C- and A delta-fibers with separate peripheral receptive zones, each of which likely provides one or more of these distinct cold sensations. With this diversity in the neural basis for cold, it is remarkable that the majority of cold responses in vivo are dependent on the cold and menthol receptor transient receptor potential melastatin 8 (TRPM8). TRPM8-null mice are deficient in temperature discrimination, detection of noxious cold temperatures, injury-evoked hypersensitivity to cold, and nocifensive responses to cooling compounds. To determine how TRPM8 plays such a critical yet diverse role in cold signaling, we generated mice expressing a genetically encoded axonal tracer in TRPM8 neurons. Based on tracer expression, we show that TRPM8 neurons bear the neurochemical hallmarks of both C- and A delta-fibers, and presumptive nociceptors and non-nociceptors. More strikingly, TRPM8 axons diffusely innervate the skin and oral cavity, terminating in peripheral zones that contain nerve endings mediating distinct perceptions of innocuous cool, noxious cold, and first- and second-cold pain. These results further demonstrate that the peripheral neural circuitry of cold sensing is cellularly and anatomically complex, yet suggests that cold fibers, caused by the diverse neuronal context of TRPM8 expression, use a single molecular sensor to convey a wide range of cold sensations.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.